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PERFORM is one of nine projects under the GEOTHERMICA – ERA NET The 
overarching target of PERFORM is to improve geothermal system 
performance, lower operational expenses and extend the life-time of 
infrastructure by the concept of combining data collection, predictive modelling, 

innovative technology development and in-situ validation. The improvement of geothermal site 
performance from the proposed work is expected to result in an increase of the energy output by 10 
to 50%. In order to reach this goal PERFORM will establish a single and shared knowledge database, 
build predictive models and demonstrate new and improved, cost-effective technologies which will 
reduce or even eliminate flow-obstructive scaling, clogging, and resistance to fluid (re-)injection at 
eight geothermal sites across Europe. 
 

The GEOTHERMICA is supported by the European Union’s HORIZON 2020 
programme for research, technological development and demonstration under 
grant agreement No 731117 
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About PERFORM 
Despite years of experience with geothermal systems, the geothermal sector still faces a significant 
number of underperforming doublets, posing a strong limitation on a region’s growth of geothermal 
energy utilization. A key operational challenge in geothermal energy production is restricted flow. 
Major obstacles for geothermal flow are scaling (mineral deposition), clogging (solid micro-particle 
deposition), corrosion and inefficient injection strategies. These issues result in high and mostly 
unforeseen costs for workovers, and additionally reduce production. In order to overcome these 
challenges, the consolidation and sharing of knowledge, including validated strategies for prevention 
and mitigation needs to be in place. 
 
Therefore, a consortium consisting of De Nationale Geologiske Undersøgelser for Danmark og 
Grønland (GEUS) and FORCE Technology (FT) from Denmark, Helmholtz Centre Potsdam German 
Research Centre for Geosciences (GFZ) and Hydroisotop GmbH from Germany and Ammerlaan 
Geothermie B.V., Greenwell Westland B.V., Wageningen Food & Biobased Research and ECN part 
of TNO from the Netherlands proposed a GEOTHERMICA project PERFORM, which has been 
granted. The overarching target of PERFORM is to improve geothermal system performance, lower 
operational expenses and extend the life-time of infrastructure by the concept of combining data 
collection, predictive modelling, innovative technology development and in-situ validation. The 
improvement of geothermal site performance from the proposed work is expected to result in an 
increase of the energy output by 10 to 50%. In order to reach this goal, PERFORM will establish a 
single and shared knowledge database, build predictive models and demonstrate new and improved, 
cost-effective technologies at geothermal sites across Europe. 
 
Based on experiences from geothermal sites within the EU, PERFORM will establish a knowledge 
database containing information on operational, chemical and physical aspects of geothermal 
energy production. The database enables sharing experiences from geothermal doublets located in 
various countries and comparing the performance of different geothermal reservoirs.  
 
PERFORM builds predictive models that allow for pinpointing the most likely sources and causes of 
failure, as well as the best options for injectivity improvement. The integrated models will provide 
forecasting for scaling, productivity, and injectivity on short- and long- time scales, supporting early 
warning and planning of mitigation measures. Coupled thermo-hydro-mechanical-chemical 
simulators will allow for evaluation of injection temperature that apart for increasing flow will also 
increase the energy output. 
 
Data and knowledge gathering, and technology demonstration is planned for geothermal sites across 
Europe. Demonstration of new and improved, cost-effective technologies will allow for the reduction 
or even elimination of flow-obstructive scaling, clogging, and resistance to fluid (re-)injection. The 
technologies include low-cost cation extraction filters, self-cleaning particle removal appliances, H2S 
removal technology and soft-stimulating injection procedures (thermal and CO2-injection). The goal 
is to provide a set of new and improved, low-cost and environmentally friendly technology 
alternatives. 
 
PERFORM integrates the knowledge database, predictive modelling and advanced technologies 
into a design and operation toolbox, which will be tied to economical calculations. The toolbox will 
enable stakeholders and specifically geothermal operators to plan future operations, mitigate 
existing obstructions, and optimize production/injection procedures, thus ensuring maximum energy 
production when needed.  
 
This project has been subsidized through the ERANET Cofound GEOTHERMICA (Project no. 
731117), from the European Commission, Topsector Energy subsidy from the Ministry of Economic 
Affairs of the Netherlands, Federal Ministry for Economic Affairs and Energy of Germany and EUDP. 
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Summary 
To understand and predict possible productivity and injectivity problems at the geothermal sites, 
better knowledge of the mineralogical assemblage of the reservoir rocks and the composition of the 
formation water is essential. On that background, a comprehensive PERFORM database has been 
established, which includes geological, geochemical, and geo-mechanical information as well as 
operational data from sensors at the plants, and the data have been analysed using a range of 
methods and tools.  
 
Seven key geothermal sites named in the project proposal have shared relevant parts of their data 
(Thisted, Margretheholm and Sønderborg in Denmark; Groß Schönebeck in Germany; Honselersdijk 
and Pijnacker Nootdorp in Netherlands; and Schlattingen in Switzerland), and data from additional 
sites have been obtained from a Dutch database, from the Danish research project GEOTHERM, 
and from the published literature. Thus, the information represents a variety of geothermal reservoir 
types and geological settings. To share, present and disseminate data, a PERFORM website has 
been constructed, managed and maintained by GEUS; refer to https://www.geothermperform.eu. In 
general, the data on the website will be public, but some proprietary data provided by private 
companies will need to be kept confidential. To resolve this problem, the data of confidential nature 
will be invisible on the public website. 
 
The collected data have been analysed to check its quality, test analytical tools and elaborate on 
potential causes for observed productivity and injectivity problems. Application of machine learning 
techniques to the production data from sensors at the Sønderborg site shows that anomalies in 
sensor output can be detected automatically. Such variations in the data can reflect many aspects 
of the operation, but it could be caused by the onset of scaling or corrosion. For time series of data, 
where gabs exist, machine learning allows estimation of the values for missing datapoints. Such 
analysis of production data can be used to support the operation of a geothermal well.   
  
Correlation analysis and principal component analysis were applied to identify systematic variations 
and correlations within the datasets and the tendency for mineral precipitation was determined with 
thermodynamic calculations. Our interpretations of the results indicate that:  

• Calcium carbonate scaling can be largely avoided by maintaining an operational pressure 
exceeding the bubbling point. The operators of the plants are for most part able to do so.  

• The concentrations of Ba and SO4 in the vast majority of formation waters are at, or close to, 
equilibrium with barite (BaSO4) at reservoir conditions but supersaturated at the surface after 
cooling. Despite this, significant precipitation of barite is only reported at few sites. We 
interpret that the barite scaling forming here reflect that the produced water is hot and Ca-
rich – and that such formation water characteristics are likely to induce barite precipitation. If 
calculations of saturation states were accurate for a broader range of solution compositions 
(i.e., in Ca-rich brines), we foresee that the extend of barite formation could be predicted. If 
formation water composition and temperature can be estimated prior to drilling, risks might 
even be assessable beforehand. 

• For the sites in the database, substantial galvanic corrosion by dissolved Pb or Cu occurs 
only where these elements coexist with elevated concentrations of chloride in the formation 
water. Tentatively, the threshold chloride concentration for such corrosion is ~100,000 mg/L.  

• Corrosion by oxygen ingress occurs at high rates and may cause the formation of substantial 
amounts of iron-oxides that can potentially cause clogging of sand screens in injection wells. 
Therefore, introduction of oxygen into the geothermal water stream should be avoided. Most 
operators of the plants are for most part able to do so by maintaining an increased operation 
pressure.  

• Data on the corrosion rate from the Sønderborg site, however, indicates that oxygen may 
well ingress here. In addition, bottom-hole samples at the site contain poorly soluble iron 
oxides, similar to in nature to the mill scale observed on left over tubing at the surface. This 

https://www.geothermperform.eu/
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suggests that the injection problems at the Sønderborg site could stem from inadequately 
prepared infrastructure, with corrosion possibly promoting the migration of the mill scales. 

• Corrosion related to sulphide formation in plants with high sulphate concentrations in the 
formation water may be a process causing decreased injectivity due to clogging of sand 
screens with corrosion products. However, the importance of this process is not fully 
understood and should be subject to future studies.  

The results show that operations based on hot, Cl rich formation waters are particularly 
challenging because of an increased potential for galvanic corrosion. If such waters also contain 
large concentrations of Ca, the risk of barite scale formation is also increased. Such knowledge 
could be included during the selection of materials for the infrastructure to minimise corrosion 
and during the design of the plant to ensure that mitigating measures, such as inhibitors or filters 
for cation removal, can be timely applied. 
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1.   Introduction  
 
The PERFORM project includes the construction of both a website and a database. The objective is 
to collect, store and present operational, chemical and physical data from a number of operating 
geothermal sites within the EU. To our knowledge, no other database containing trans-national 
information on geothermal data has been established until now. Both the PERFORM website and 
database focus on uploading existing data, but also new data have been collected and uploaded.  
 
The database and website form the basis of comparing, integrating and evaluating site-specific data, 
with the objective to: 

• Learn from the data collected and understand why operational problems occur at certain 
geothermal sites/plants. 

• Address and resolve major problems, including scaling and corrosion issues. 

• Better understand reservoir performance aiming at explaining causes of observed problems. 

 
GEUS, TNO, GFZ and FT have all participated in the effort to establish common knowledge and 
address major problems. 
 
The main results of work package 1 of the PERFORM project is reported herein. Chapter 2 outlines 
the process of the data collection – the data types and the origin of the data are described. Chapter 
3 gives the structure and information on the created database. Chapter 4 describes and presents 
the website. Chapter 5 and 6 focus on production data and presents our analyses of the water 
composition data. Chapter 7 discusses the results. Finally, Chapter 8 presents the conclusions. 
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2.   Data collection 
 
To establish a database available through the PERFORM website, data from approx. 26 sites and 
another 40 wells were collected. The aim was to include as much information as possible about 
geological, geochemical, physical and operational aspects for each of the geothermal sites or wells 
included in the database. However, depending on the specific data source for each entity in the 
database, the amount of data varies considerably. For a number of key geothermal sites identified 
initially in the project, detailed information is available while for other geothermal wells, only limited 
data were available in the literature. The data collection was based on: 
 
A. Data from key geothermal sites identified initially in the project 
 
B. Additional data from Dutch sites obtained from an in-house TNO database with the permission of 
operators as well as new data from Dutch reservoirs 
 
C. Data collected from a parallel geothermal research project in Denmark (the GEOTHERM project) 
 
D. Data collected from the literature 
 

2.1 Data from operators of key geothermal sites 
 
Initially, eight key geothermal sites located across Europe were identified. As part of the project 
application phase the operators of these sites had agreed to share data in the common knowledge 
database. These geothermal sites are: 
 

• Thisted, Denmark 

• Margretheholm, Denmark 

• Sønderborg, Denmark 

• Groß Schönebeck, Germany 

• Honselersdijk, Netherlands 

• Pijnacker Nootdorp, Netherlands 

• Schlattingen, Switzerland 

• Oberlaa, Austria (no data supplied) 

Data were collected using the questionnaire outlined below (Table 2.1). The questionnaire was 
designed to obtain as much information as possible about basic data, important geological aspects, 
reservoir parameters, key geochemical data, surface facilities, well design, operational performance 
and potential injectivity problems. 
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Table 2.1 Questionnaire on obtaining site-specific data 
1. Name of site or site.                

Basic data 
 

 

Age of site or site. 

Producing reservoir (depth and lithology) 

Number of wells, well locations 

Distance between production and injection well(s) 

Position (depth) of perforated intervals 

Type and sort of available samples (overall list) 

A list of relevant reports and articles 

 

2. Important geological 
data 

 

Geological setting and stratigraphy 

Mineralogical composition and chemistry of the reservoir rock 

Depositional environment 

Cores and core descriptions (if available) 

Fracture presence (if any) 

Occurrence of lead/Pb in minerals. Which minerals? 

Extras 

 

3. Information about 
selected reservoir 
parameters  

Porosity 

Permeability 

Net and gross sand thicknesses 

Formation temperature (of the reservoir zone) 

Formation pressure (of the reservoir zone). 

Flow rate when producing the reservoir, incl. seasonal variations. 

Extras 

 

4. Key geochemical data Geochemical analyses of the formation water. Chemical composition in mg/L along 
with sample depths.       

Composition of the dissolved gases in the formation water. Focus on the 
concentration of CO2, CH4, H2S etc. 

Geochemistry of the injection water. 

Water properties, e.g. pH, density, conductivity, resistivity etc. of both the produced 
water and the injection water.  

Salt concentration, TDS, mineralization (g/L). 

Initial reservoir temperature. Temperature of the produced water – and the 
(re-)injected water. 

Initial reservoir pressure (needed for the geochemical modelling). 
In addition: Injection and operating pressures. 

Particles in fluid samples (e.g. in the water produced): What is the particle content, 
the composition and the particle size? 

Comments on chemical treatment of the injection water (or the reservoir rock). May 
involve adding chemicals/ inhibitors or removal of chemical reactants. 

Scaling: Composition of precipitating minerals (if scaling is observed) 

Corrosion: Composition of corrosion products (if observed) 

Tables with: Analyses of filtrate samples (e.g. from membrane filters, bag-filters or 
cartridge filters. 

In case of degassing: Which gasses are observed? 

Analysis of fluid samples originating from flooding experiments. 

Additional data relevant for geochemical modelling (thermo-hydro-chemical 
processes). 

Geo-mechanical data  

Extras 

 

5. Short description of 
surface facilities 
(incl. materials used) 

 

Filters at well head (if cation, particle or similar filters are used) 

Heat exchanger(s) 

Pumps (EPS, heat pumps). 

Materials used in the construction of surface facilities 

Well head 

Comments 

Extras 
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6. Information about well 
design 
(incl. materials used) 

Casing and tubing material 

Pipeline material 

Casing depths, vertical wells, deviated wells 

Completion design 

Comment on the use of gravel packs, subsurface filters, screens etc. 

Extras 

Comments 

 

7. Information about 
operational performance 
and data monitoring, 
including on-site 
measurements  
 

 

Flow rate as function of time (time series, to be reported in tables) 

Injection rate as function of time (time series) 

Pressure as function of time (time series) 

Temperature as function of time (time series) 

Corrosion rate as function of time (time series)  

Data originating from on-site monitoring of particle size, particle composition, water 
composition etc. 

Extras/comments 

 

8. Possible mechanisms 
for injection problems 
(or reduced injectivity), 
if observed.                            
 

 

Fines migration. 

Scaling issues (type of scaling, precipitating minerals etc.) 

Inadequate filtering prior to re-injection. 

Precipitation of salts due to cooling. 

Degassing of CO2, pH increase. 

Bacterial activity (e.g. sulphate-reducing) 

Clogging of pores. Migration of particles. 

Clay swelling (clay clogging). 

Mobilization of particles from the reservoir. 

High mineralization. 

Corrosion issues, leading to clogging/plugging: 
Galvanic or CO2 or oxygen corrosion. Also: electrochemical processes, lead/Pb 
precipitation, H2S presence etc.  

Gas issues (e.g. degassing, CO2 that separates out, ingress of O2)  

Onset of reduced injectivity at a particular injection rate? 

Mitigation strategies (e.g. chemical injection, well work-over etc.)  

Comments on observed re-injection challenges. 

 

2.2 Additional data from Dutch sites  
To supplement the information obtained from the eight key geothermal sites, data was collected from 
22 Dutch geothermal sites. All active Dutch operators were contacted to request data and obtain 
their permission to publish new and existing data in the PERFORM database. For the sites where 
no (complete) dataset was available, geothermal brine samples and/or samples from geothermal 
wells cuttings (at the TNO core shed) were analysed. 
 
In the Netherlands it is mandatory for operators to provide the advisory group of economic affairs 
(TNO) and the Dutch state supervision of the mines with certain documents after a new geothermal 
site is completed. These documents contain data from well tests, water and gas analyses, well 
design etc. There is a challenge in making these data accessible for the public geothermal 
community. Firstly, any data provided by the operators remains confidential until five years after 
delivery and can therefore not be used in other projects without permission from the operator. Also, 
TNO collects geothermal data in projects jointly with the operators but this data also remains 
confidential. To use and publish the information available in-house at TNO, operators have to give 
their permission explicitly. 
 
Therefore, operators were personally contacted by phone and e-mail to ask for their permission to 
use the data already present in the TNO database. From the 22 geothermal sites, eight gave 
permission to use their data on the public website (without naming the operator). Thirteen operators 
could not be reached by phone and did not reply to the e-mail and one operator gave no permission 
to publicly use the data.  
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Table 2.2 List of geothermal wells in the Netherlands, their permission for the use of data and 
the available water, gas and mineralogical data. 

 
 
 

2.3 New data acquired for Dutch reservoirs  
As a second step, the incomplete datasets of the sites that gave permission for publication were 
supplemented with new analyses of gas, water and/or mineralogy. Often the water and gas data 
were already available but mineralogical data was missing. Storage of cuttings or cores from wells 
drilled in the Dutch subsurface is mandatory and are available for sampling in the TNO core-shed. 
Cuttings from the targeted wells were sampled and analysed with XRD. Table 2.3 lists all the samples 
that were collected and from which a selection was analysed.  
 
 
Table 2.3 List of samples from geothermal wells 

 
 

Operators Wells Available brine data mineralogy data Gas data Missing data permission

Aardwarmte Vierpolders BRI-GT-01,02 All no response

Aardwarmte Vogelaer PLD-GT-01,02 All no response

Agriport A7, middenmeer (Ecw)MDM-GT-01,02,03,04,05,06 Brine analysis well 2 analyse mineralogy permission

Ammerlaan PNA-GT-01,02,05,06 Brine analysis well 1 3x complete permission

Californie Lipzig Gielen CAL-GT-01,02,03 Brine analysis well 1,3 mineralogy no permission

Duijvesteijn PNA-GT-03,04 Brine analysis well 3,4 mineralogy, gas permission

Floricultura Heemskerk HEK-GT-01,02 Brine analysis well 1 analyse mineralogy permission

Geopower Oudcamp MLD-GT-01,02 All no response

Geothermie de Lier LIR-GT-01,02 mineralogy, brine no response

Greenbrothers ZVB-GT-01,02 All no response

Greenwell Westland HON-GT-01,02 Brine analysis well 1,2 4x complete permission

Haagse aardwarmte Leyweg HAG-GT-01,02 Brine analysis well 2 2x complete no response

Het Grootslag Andijk (Ecw) ADK-GT-01,02,03,04 All permission

Hoogweg Aardwarmte LTG-GT-01,02,03 All no response

Koekoekspolder (greenhouse geopower)KKP-GT-01,02 Brine analysis well 1,2 analyse mineralogy no response

Mijnwaterproject HLN-GT01,02 All no response

Nature's heat KHL-GT-01,02 All permission

Trias Westland NLW-GT-01,02 All no response

Van den Bosch 1&2 VDB-GT-01,02 Brine analysis well 2 analyse mineralogy no response

Van den Bosch 3&4 VDB-GT-03,04 Bine analysis well 3,4 analyse mineralogy no response

Wayland energy LSL-GT-01,02 All no response

Wijnen Grubbenvorst ARC-GT-01,02 Brine analysis All permission

Samples Depth (m) Samples Depth (m)

CAL-GT-03 MDM-GT-01

CAL-03-1 2105 MDM-01-1 2545

CAL-03-2 2000 MDM-01-2 2700

CAL-03-3 2525 MDM-GT-02

CAL-GT-02 MDM-02-1 2330

CAL-02-1 1420 MDM-02-2 2520

CAL-02-2 1585 MDM-GT_03

CAL-03-3 1675 MDM-03-1 2540

HEK-GT-02 MDM-03-2 2695

HEK-02-1 2690 MDM-GT-04

HEK-02-2 2865 MDM-04-1 2440

HEK-02-3 2940 MDM-04-2 2605

HEK-GT-01-S1 VDB-GT-03

HEK-01-1 2885 VBD-03-1 2066

HEK-01-2 2995 VDB-03-2 2084

KKP-GT-01 VDB-03-3 2014

KKP-01-1 2154 VDB-GT-04

KKP-01-2 2194 VDB-04-1 1535

KKP-01-3 2232 VDB-04-2 1560

KKP-GT-02

KKP-02-1 2114

KKP-02-2 2196
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2.4    Data collected from the Danish GEOTHERM project 
Site-specific data from the plants listed below originate primarily from synopsis reports prepared for 
the Danish GEOTHERM research project. These reports outline operational experiences with a 
number of geothermal plants located in Sweden, Germany and France (Erlström, 2017; Pastrik and 
Förster, 2017; Tremosa et al., 2017). The Polish plants are described in e.g. Ura-Binzyk (2019) and 
Kepinska (2019). 

 

• Lund, Sweden 

• Melleray, France 

• Châteauroux, St Jean, France 

• Neustadt-Glewe, Germany 

• Neubrandenburg, Germany 

• Waren/Müritz, Germany 

• Neuruppin, Germany 

• GeneSys Horstberg, Germany 

• Pyrzyce, Poland 

• Podhole, Poland 

• Insheim, Germany  

• Achéres, France 

• Bordeau Grand Parc, France 

• Bordeau La Bénauge; France 

• Bordeau Mériadeck, France 

• Cergy-Pontoise, France 

• Mérignac Base Aérienne 106, France 

• Pessac Sainge-Formanoir, France 

 

2.5    Supplementary literature data  
In addition, data from 40 wells located in the Netherlands, Germany, France etc. have been gathered. 
These data originate primarily from published scientific articles and literature in general.  
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3   The PERFORM database 
The full version of the PERFORM database contains both confidential and released data. This 
version is used internally among the members of the PERFORM project group. A subset of the data 
in the database consisting only of released data is publicly available via the PERFORM website. The 
full database contains information about mainly:  
 

• Geochemical analyses of the formation brine and the injection water (mg/L). 

• Analyses of particles (solids) in fluid samples (weight-%). 
o Focus is on content and amounts of solids, along with particle composition and size. 

Both the formation and injection waters have been considered. The samples stem 
from downhole, filter bags, surface facilities and well heads. 

• Composition of the dissolved gases in the formation water. 

• Scaling and corrosion products. 

• Description of problems observed when operating the sites (using specific codes). 

• Information about surface facilities and well completion designs.  

• Geology, depositional environment and mineralogy of the reservoir rocks. 

• Reservoir parameters. Porosity, permeability, temperature, gross and net sand thicknesses  

• Time series. Variation in flow rates, temp., pressure.  

• References (bibliographic). 

The public subset of the database can be downloaded from the website: 
 
 http://www.geothermperform.eu/wp-content/uploads/2019/10/backup-20191022.zip 
 
Apart from a backup file of the database, this zip file also contains a description of code lists, tables 
and columns and a diagram showing the relation between the tables. To give a visual impression of 
the database, a Database Diagram is shown in Figure 3.1. 
 

http://www.geothermperform.eu/wp-content/uploads/2019/10/backup-20191022.zip
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Figure 3.1 Database Diagram for the PERFORM database 
 
 
The table below lists the number of sample types, feature types and data points in the database 
(Table 3.1). The numbers shown in the table are expected to increase as the project proceeds. 
 
Table 3.1 Statistics on selected data types in the database 

Type of data Number 
(October 2019) 

Formation water samples 138 

Injection water samples 18 

XRD analyses 25 

Particle analyses 14 
Analyses of scaling products 4 

Analyses of observed minerals 202 

Wellbores 105 

Reservoir rock designations 90 

Geothermal sites 27 

Surface facility indications 26 

Datapoints related to time series analyses 1281610 

Number of measurements related to a parameter 4933 

Sample type, sampling method, well name etc. 199 

Reservoir parameter values 167 

Bibliographic references 122 
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4   Website construction  
A public PERFORM website was constructed in order to disseminate information gathered in the 
PERFORM project. Access to the website can be obtained using the link: 
 https://www.geothermperform.eu 
 
The entry to obtaining information from the website is the geothermal site name, either by clicking 

on the location map shown below or by entering the site name. The website front page is illustrated 

below. 

 

 

 
Figure 4.1 The PERFORM website (www.geothermperform.eu) 
 
 
 
 
 
 
 
 
 
 

https://www.geothermperform.eu/
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The PERFORM website includes information about: 

• Site locations (a base map is shown on the from page) 

• Conceptual sketches of site configurations (only for 6 selected sites) 

• Maps with reservoir parameters. 

• Link to fact sheets. These sheets include information about the items listed below, if data are 

available from the operators, research articles, reports etc.: 

o Reservoir rock (sandstone, limestone etc.). 

o Reservoir depth and reservoir temperature. 

o Problems observed in the operating sites. 

o Geological model for the reservoir(s) associated with the operating sites. 

o Well completion design. Only for selected wells drilled at site localities. 

From the website, it is possible to download the released data from the database. The database is 

provided as a zip file containing the following (some data material is password protected):  

o A backup file from the PostgreSQL database (SQL statements). 

o An ER diagram.  

o A dictionary with a description of all tables and columns in the database. 

o The content of the code lists. 

 

 

 

Figure 4.2 The download data page from the website. Accessible via the “Database” link in 
the menu. 
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To be able to use the backup file, knowledge about relational databases and SQL is required, 

which not all users have. For that reason, most data are also provided as Excel files: 

• List of sites with name, country and location. 

• List of wellbores with name (long/short), purpose and well location.  

• List of samples with well or site name, sample type, wellbore name, sampling time, sampling 

method, interval (top & base), location (country) and source (e.g. bibliographic reference). 

• Brine analyses with sample_id, feature name, sample  type, sampling time, sampling place, 

wellbore name, top meter, base meter, confidentiality status, temperature qualifier, 

temperature, pressure, pH, density, resistivity and concentrations (mg/L) of geochemical 

elements such as Cl, Br, SO4 etc. 

• Mineral composition of reservoir rock in selected samples with wellbore name, depth, 

laboratory and amounts of minerals such as Quartz, Plagioclase (albite), Calcite, Mg-Calcite, 

Ankerite, Siderite, Halite, Sylvite, Pyrite, Hematite, Chlorite etc. 

The data model can be downloaded from the website via a link. 
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5   Analysis of production data 
The PERFORM database contains a number of sensor timeseries datasets that relate to the 

production of four different wells. Such data give an impression of the operational state of the 

geothermal plant with high temporal resolution and can, potentially, be analysed in real time. 

Variations in the data can reflect many aspects of the operation, but it could be caused by the onset 

of processes that in time will be detrimental to the performance of the plant, such as scaling or 

corrosion. Thus, development of tools for analysis of the data that can be implemented to 

automatically detect anomalies could allow early detection of indications of plant malfunction. In this 

section of the report, two case studies are described to show how these datasets, in combination 

with machine learning techniques, could be used to support the operation of a well. The first case is 

related to detecting anomalies during production, the second case to predicting missing data as a 

result of malfunctioning or missing sensors. Out of the four wells for which production data is 

available, the Sønderborg well covers the longest time period, and has the highest sensor frequency. 

For these reasons, both cases are demonstrated using the Sønderborg data, but the techniques 

shown can be transferred to other wells. In the next section, the data set is briefly explored and 

visualized. In the two following sections, the two case studies are discussed separately.  

5.1 Sønderborg production data 

The Sønderborg production data set contains values for five sensor measurements: flowrate in 

Nm3/h, upstream and downstream pump pressures in bar, and upstream and downstream pump 

temperatures in °C. The timeseries span a period of around 4.5 years with a timestep of 10 minutes. 

Due to missing data in some of the sensors, the number of datapoints in ranges from 164429 to 

234864. Figure 5.1 shows a plot of the entire data set, which clearly shows the seasonal trend of 

start-up around winter and shutdown around spring. 

 

 
Figure 5.1 Production data of the Sønderborg well 
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5.2     Anomaly detection 

An anomaly is part of a data set that differs significantly from the rest of the data or does not fit within 
expected behaviour. Anomalies will often occur as extreme-valued data points (outliers), irregular 
trends, or an increased or decreased frequency of certain values. In the current context of 
geothermal production data, anomalies will most likely result from sensor failures or problems during 
production such as corrosion or scaling. It is important to be able to detect these anomalies so that 
an operator can be warned when production starts to deviate from regular trends, or sensors are 
malfunctioning. In addition, detecting anomalies in historic data can be useful in order to filter out 
bad data when only good representative data is required (for example for history matching purposes). 
 
In this case study, machine learning techniques were used to detect anomalous behaviour in the 
downstream temperature sensor measurements. Figure 5.2 shows a period within the Sønderborg 
production data in which the downstream temperature sensor suddenly shows large fluctuations 
occurring without any indication in the other sensors of a reason this could be happening. In the 
figure, the irregular behaviour has been indicated by the red area, surrounding regular behaviour is 
indicated by the green region. 
 

 
Figure 5.2 A period of the Sønderborg production data showing anomalous behaviour in the 
downstream temperature 
 
There are many different machine learning techniques that can be used for anomaly detection. In 
this case study, an "autoencoder" was used. An autoencoder (Baldi, 2012) is a type of artificial neural 
network consisting of an encoder part, and decoder part (see Figure 5.3). The encoder is used to 
compress data into a lower-dimensional representation, while the decoder is used to reconstruct the 
original data from the compressed "encoding". It is possible to tune an autoencoder on data 
corresponding to regular behaviour such that the difference between original and reconstructed data, 
the "reconstruction error", is as small as possible. A detailed discussion on the mathematics behind 
autoencoders and their tuning methods is considered outside the scope of this report, the interested 
reader is referred to (Baldi, 2012) and (Bishop, 2006).  
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When the tuned autoencoder is given irregular behaviour to encode and decode, the reconstruction 
error should be significantly higher than for regular behaviour. By setting a threshold on the 
reconstruction error above which behaviour should be considered anomalous, a separation can be 
made between regular and irregular trends in the data. In this way it is possible to express the 
deviation from regular behaviour of a multi-variate signal in a single number. A considerable change 
in any of the sensor measurements from the norm would be represented as a significant increase in 
this number. This simplifies the task of monitoring multidimensional time series data for anomalies.  
 

 
Figure 5.3 Schematic representation of an autoencoder 
 
Using the parts of the production data shown in Figure 5.2 labelled as regular behaviour, an 
autoencoder was tuned. Figure 5.4 shows the reconstruction error of this autoencoder compared to 
the original data; the threshold was set as three standard deviations away from the mean of the 
reconstruction error scored on the regular behaviour only. As can clearly be seen, the error is much 
larger for the anomalous region than for the regular region, and for the most part well above the 
threshold. In addition to the clearly anomalous region near the beginning of the signal, there is 
another brief anomalous period near the end. While there is a slight deviation from the rest of the 
regular behaviour in this period, it is not very significant, and perhaps should not be flagged as 
anomalous. This indicates that the current autoencoder might be too sensitive to regular changes, 
which most likely results from the fact that the current data set of regular behaviour is limited. This 
was done intentionally to keep the case simple, but the detrimental effects this choice had should be 
acknowledged here. When moving to a full implementation, it would be advised to tune it to a much 
larger set of regular behaviour that is representable of the entire production period of interest. Once 
this implementation is in place, the autoencoder can be used in real-time monitoring: a fixed-size 
time period of the most recent measurements is continuously encoded and decoded using the tuned 
autoencoder in order to determine the reconstruction error. If the reconstruction error of newly 
incoming data rises above the anomaly threshold, the operator can be alarmed. It would also be 
possible to set a number of thresholds for different severities of anomalies, e.g. one to be used as 
an early-warning alarm, one for minor anomalies and one for major deviations.  
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Figure 5.4 Anomalous and regular parts of the production data and their corresponding 
autoencoder reconstruction error (expressed as mean absolute error MAE) 
 

5.2 Predicting missing data 

Certain periods in the Sønderborg production data feature either missing or clearly incorrect 

measurement values, most likely due to sensor failure or data recording errors. There are many 

reasons having an estimate of what the sensor should indicate during these periods would be useful. 

For example, for data analytics / machine learning purposes, history matching, or operational 

diagnostics. Figure 5.5 shows a part of the production data from the Sønderborg well in which the 

downstream temperature sensor indicates temperatures of -15 degrees Celsius, comparing this to 

the rest of the data (Figure 5.1), it can clearly be seen that these are incorrect values. In this case 

study, machine learning techniques, more specifically Artificial Neural Networks (ANN), were used 

to predict missing sensor data based on non-missing values of other measurements that were 

available during this time period. 
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Figure 5.5 A period in the Sønderborg production data containing incorrect downstream 

temperature sensor data 

 

An artificial neural network is similar to an autoencoder (in fact, an autoencoder is a special type of 

neural network), but instead of creating an encoding-decoding scheme that reconstructs a given set 

of data, the network predicts one variable based on other variables. Just as for the autoencoder, the 

ANN is tuned to a specific data set containing inputs and outputs such that it predicts correctly which 

output belongs to which inputs. The data used to tune the ANN is shown in Figure 5.6, in this case 

the input variables are the flowrate, upstream and downstream pump pressures, and upstream pump 

temperature, while the output is the downstream pump temperature. Again, technical details on 

artificial neural networks are not considered part of the scope of this report, and the interested reader 

is referred to (Bishop, 2006). 
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Figure 5.6 Data set used to tune the ANN to predict missing downstream pump temperature 
values 
 
The predictions made by the tuned ANN are shown on top of the tuning data and test data in Figure 
5.7. While the details are not predicted with high accuracy, for most of the time the ANN does 
manage to model the general trends or behaviour of the system (e.g. when flowrate goes down, 
temperature goes down). From the bottom plot of Figure 5.7 we can also see that the ANN estimates 
a temperature for the incorrect period that seems reasonable. 



 

 Doc.nr: 
Version: 
Classification: 
Page: 

PERFORM-D1.3 
Final 2020.01.15 
Public 
24 of 62 

 
 

         

www.perform.eu 

 
Figure 5.7 Downstream temperature predictions made by the ANN  

 

While the results from the initial ANN were not completely unsatisfactory, it was believed that it could 

be improved. By looking at the data, it was established that the variables used as inputs were not 

the only variables affecting the downstream temperature. As can be seen from Figure 5.1 during the 

summer periods, pressures and flowrates are constant and the upstream temperature is slowly 

decreasing, but the downstream temperature is varying quite a lot. As these variations seem to follow 

a seasonal trend, it is likely due to ambient temperature fluctuations. This inspired the idea of using 

weather data as an additional input to the ANN to see whether it would improve the accuracy of the 

ANN. 

 

A script was written that downloaded hourly weather data from the Sønderborg area from the website 

of the Danish Meteorological Institute (https://www.dmi.dk/) and aligned it with the rest of the data. 

The resulting data set is plotted in Figure 5.8, as can be seen the variation in downstream 

temperature clearly follow the ambient temperature trends. 
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Figure 5.8 Sønderborg production data including weather data retrieved from the Danish 

Meteorological Institute 

 

A new neural network was tuned including the ambient temperature as an input variable, all other 

specifications were kept the same as before. The predictions made by this network are compared to 

measured data as well as the previous results in Figure 5.9. The new ANN shows similar behaviour 

as the previous one, although the general trends are followed more accurately this time, especially 

near the end of the tuning data set. When it comes to filling in the incorrect values, the new ANN 

shows a similar baseline of temperature, but fluctuates much more. While this makes the data look 

more natural, whether it is also more accurate to the real values cannot be determined.  

 

This brief case shows that using artificial neural networks makes it possible to estimate the value of 

missing sensor data based on historic sensor measurements and current values of other 

measurements. This would be useful in general when a sensor is malfunctioning, while a general 

estimate of its value is still desired. In addition, it could also be used as an anomaly detection 

measure when sensors are working properly: if the real measurement values start to deviate 

significantly from the neural network estimates, it could indicate irregular operation.  
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Figure 5.9 Downstream temperature predictions made by the ANN also tuned on ambient 

temperature data 
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6   Analysis of data on water composition 
One great advantage of collecting a large data set from many sites for the chemical composition of 
waters is that tools intended for analysis of larger datasets can be applied to get new insights and 
identify common chemical trends across sites and country boundaries. Here, we have used principal 
component analysis and correlation analysis to identify systematic variations and correlations within 
the datasets. In addition, we have probed the tendency for mineral precipitation as scales via 
thermodynamic calculations. 

6.1 Principal Component Analysis 
The database contains a large amount of chemical brine/water analyses from several sites located 
in different countries and in different geological settings. To categorize the water compositions and 
to identify potential trends in the data material, a Principal Component Analysis (PCA) was carried 
out.  
 
The PCA method reduces the axes that are needed to describe the variation in a dataset. Fewer 
diagrams are thus needed to show compositional differences between the samples. The database 
contains 247 samples of geothermal water from 92 different sites (plants, boreholes, springs, 
reservoirs, etc.). PCA does not accept missing data, meaning that only a few parameters can be 
used in the PCA, if all sites are to be included in the analysis. Consequently, only the concentrations 
of Cl-, SO4

2-, Na, Ca, Mg, K were used to include the majority of sites in the initial analysis. The 
parameters were normalized prior to the PCA, and thus weighted equally. 
 
 
 

  
Figure 6.1 PCA of brine composition using six parameters. Score plot for the PC-1 and PC-2 
axes. 
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The diagram in Figure 6.1 shows a score plot for the principal component axes PC-1 and PC-2. This 

diagram covers 89% of the variation in the dataset. The samples that are seen to the left originates 

from geothermal sites in Poland and China. These are low salinity brine samples. The salinity 

generally increases to the right along the PC-1 axis. Interestingly, the variation described by PC-1 

and PC-2 can be broadly reduced to three endmembers and mixtures thereof for practically all sites: 

Endmember 1, with composition of the low salinity brines; Endmember 2, with a composition given 

by the Groß Schönebeck waters; and Endmember 3 given by the compositions at the Heemskerk, 

Margretheholm, Neustadt and IJsselmuiden sites. For several of the sites, their data points are 

aligned along lines connecting Endmember 1 and Endmember 2 or 3. This is most pronounced for 

Gross Schönebeck, but also occurs to some extend for samples from Pijnacker Nootdorp and 

Middenmeer. Given our interpretation of the PCA data, this suggests that some of the waters 

sampled at Groß Schönebeck may in particular be affected by dilution by a low salinity component 

or perhaps by evaporation (either prior or during sampling or during sample treatment). Apart from 

these variations, datasets on composition from a given site generally plot tightly with similar scores 

for the two PCs, suggesting that the chemical compositions measured at different points in time in 

general are similar. 

 

Another use of the diagram is to compare sites and their described problems – if any. As an example, 

four out of the five operating sites with a high score for PC-1 (Figure 6.1) have reported formation of 

substantial amounts of metallic Cu or Pb (Gross Schönebeck, Margretheholm, IJsselmuiden, and 

Neustadt). In contrast, at Insheim the occurrence of metallic Pb is not reported, although the 

concentration of Pb in the brine is twice as high as at the Margretheholm plant (1.6 mg/L at Insheim, 

0.8 mg/L at Margretheholm). This indicates that not only Cu and Pb but also the general brine 

composition, i.e. high salinity, significantly affect corrosion with ions of Cu or Pb as oxidants.  

 

Conversely, the Thisted site has been running since 1984 without problems, whereas the 

Sønderborg site is currently not operating. Yet, the data points of Thisted and Sønderborg are close 

to each other in the diagram (Figure 6.1). The lack of match between the general brine composition 

and the degree of problems reported for these two sites, suggests that the Sønderborg site 

performance may be controlled by processes that are not (only) related to the brine composition. 

 

To put the above analysis into perspective, another PCA was performed with 13 parameters: pH, 

HCO3
-, Cl-, SO4

2-, Na, Ca, Mg, Sr, K, Fe, Mn, Ba and Pb. This reduces the dataset to 107 samples 

from nine different sites. Due to the altered data space (Figure 6.2), the PCA- axes have changed 

direction compared to the diagram above but the pattern and grouping among the sites are 

approximately the same. Therefore, the addition of more parameters does not change the 

conclusions above. 
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Figure 6.2 PCA on brine chemistry using a dataset with 13 parameters. Score plot for the PC-

1 and PC-2 axes.  

 

6.2 Correlation of brine composition data 
Correlation between two variables can give an indication of how much their trends are aligned. In 

this case study, correlations between species found in the formation water of wells in the database 

were determined in order to investigate whether common or well-specific relationships could be 

found. The next subsection will give a short explanation of the correlation coefficient, and how to 

interpret a correlation matrix. In the following section, the results of the analysis will be given and 

discussed. 

  

6.2.1 Correlation coefficient and correlation matrix 

Two variables are said to be correlated if one of them increases, the other (linearly) will increase or 

decrease with it (or vice-versa). Correlation can be expressed numerically through a correlation 

coefficient, of which many different definitions exist. The standard correlation coefficient used in most 

correlation analysis is Pearson’s coefficient (Bruce & Bruce, 2017), and has therefore also been 

used here. This correlation coefficient definition results in a number ranging from +1 to -1, where 

values above 0 indicate positive correlations, and values below 0 indicate negative correlations. A 

value at or around 0 means there is little to no correlations between variables. 

  
The correlation coefficient can be visually interpreted by plotting the two variables against each other. 

The closer the points on this plot lie on a single straight line, the closer they are correlated, this is 

illustrated in Figure 6.3. Note that the correlation measure is independent of the slope of the line. For 
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more details on the correlation coefficient, its properties, and how to compute it, the reader is referred 

to Freedman et al. (2007) and Bruce & Bruce (2017). 

  

Figure 6.3 Visual representation of the correlation coefficient 

 

In this case study, many variable combinations will be analysed at the same time, making it difficult 

and cumbersome to plot and interpret each resulting correlation graph individually. For this reason, 

only the values of the correlation coefficients will be reported. In addition, as all correlations 

investigated are combinations of the same set of variables, they can be graphically represented in a 

correlation matrix plot. For an example correlation matrix, see Figure 6.4. The correlation matrix is a 

square grid whose x- and y-axis are equal and correspond to the variables under investigation. Every 

element in the grid (matrix) is a combination of two variables and is coloured to reflect the value of 

the correlation coefficient between these two variables; green for positive values and red for negative 

values. The correlation between variables X and Y is found by determining the element in the matrix 

where row X intersects column Y – and comparing its colour with the colour bar right of the matrix. 

As the correlation between a variable and itself is always 1, all elements on the diagonal of the 

correlation matrix will always have a value of 1 and be dark green in colour. Furthermore, the 

correlation between X and Y is the same as the correlation between Y and X, thus the correlation 

matrix is symmetric across the diagonal. 

 

 
Figure 6.4 Example of a correlation matrix plot 
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At what value a correlation coefficient can be considered significant is always difficult to define, and 

often depends on the field of application. In the following sections an absolute value of 0.7 or higher 

will be considered as significant. It should also be noted that the correlation coefficient can only be 

used to express linear relationships. Due to the complexity and variety of non-linear relationships 

they have not been taken into account in this analysis. 

6.2.2 Formation water analysis 

The formation water composition data set contains around 138 measurements for more than 30 

different wells. The first correlation analysis looks at behaviour of individual wells and how they 

compared against each other. In order to ensure the calculated correlation coefficients are significant, 

only wells with more than 2 measurements were taken into account; this left the Gross Schönebeck, 

Margretheholm, Sønderborg Fjernvarme, and Thisted Varmeforsyning wells for the analysis. 

 

Figure 6.5 shows the correlation matrices of the four wells with the most measurements, the numbers 

in parentheses behind each species indicate the number of data points for that species. Note that 

the Thisted well has at most four measurements for any given species, thus the correlation values 

reported for this well are much less robust than the other wells and should be interpreted with care. 

As can be seen, the Gross Schönebeck and Thisted Varmeforsyning wells show mostly positive or 

no correlation, while the Margretheholm and Sønderborg Fjernvarme show considerably more varied 

correlations, both strongly positive, strongly negative, and no correlation. There are several species 

combinations that stand out, for example Na-Cl and Ca-Cl for the Gross Schönebeck and Thisted 

Varmeforsyning, Na-HCO3 for Margretheholm, and Br-HCO3, Na-SO4 and Mg-Ca for Sønderborg 

Fjernvarme. The overall positive correlations for many of the components of the Gross Schönebeck 

and Thisted Varmeforsyning datasets could indicate that the samples from the sites have at some 

point undergone dilution with a low salinity solution or having experienced evaporation. 
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Figure 6.5 Correlation matrices of the four wells with the most measurements. The numbers 

in parentheses indicate the number of data points for that species 

 

In order to investigate the similarity between these four wells, their correlations have been compared 
by taking the absolute difference between the coefficient values. The result of this is a matrix of 
matrices shown in Figure 6.6, in which the colours of the elements in the matrices correspond to the 
difference in correlation value. The maximum difference value is 2, indicating that the combination 
of species has completely opposite correlation value for each of the wells (i.e. positive 1 for one well, 
negative 1 for the other). The lowest value of the difference is zero, corresponding to equal 
correlation values of a species combination. In the matrices of Figure 6.6, only species for which 
measurements were available for all four wells were taken into account. Matrices containing more 
blue elements indicate a closer similarity between wells when it comes to correlations of the species 
found in their formation water. As can be seen from the figure, the Gross Schönebeck and Thisted 
Varmeforsyning show the closest similarity. 
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Figure 6.6 Correlation coefficient value difference matrices comparing the four wells with 

most measurements against each other 

 

In the prior analysis, four individual wells have been analysed and compared to each other. In the 

following section, the entire formation data set will be investigated, and the four wells will be 

compared to it in order to determine how the general trends compare against the individual trends.  

 

Figure 6.7 shows the correlation matrix constructed using all samples found in the formation water 

data set, as can be seen, the correlation values are generally less pronounced, and no significant 

negative correlations are present. Some of the species combinations that stand out as having a 

strong correlation are: Na-Cl, Ca-Cl, Mn-Ca, and K-Ca. In addition, one of the strongest negative 

correlations is observed between Ba and SO4. This would be expected if the solubility of barite 

governs both of their concentrations. 
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Figure 6.7 Correlation matrix determined using all samples in the formation water data set 

 

To see how the four individual well correlations shown in Figure 6.5 compare against the overall 

correlations shown in Figure 6.7, four difference matrices can be constructed, similar to those in 

Figure 6.6. These difference matrices are shown in Figure 6.8. The figure shows that out of the four 

wells, the Groß Schönebeck well most similar to the total correlation. As the Thisted well was found 

to be similar to the Schönebeck well, it is unsurprising that it is also close to the overall correlation 

matrix. It should be mentioned that the Schönebeck well contributes 28 of the 138 samples to the 

data set, so its similarity to the entire data sets slightly biased. The other two wells also show some 

close similarities but contain a number of large differences. For example, the Margretheholm well 

differs largely in its correlation between Na and Cl, as well as K and Na, while the Sønderborg well 

differs in correlation between K and Cl, Si and Ca and Mn and K. 
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Figure 6.8 Correlation coefficient value difference matrices comparing the four wells against 

the total correlation matrix 

 

While the previous analysis can be used to find correlations that are specific to each of the wells, it 

is also interesting to look at which correlations show significant similarities or differences between 

all four wells and the total. This is done in two ways: by looking at how many of the wells have 

correlation values that are either close to or different from the overall data set correlations (i.e. look 

at the difference values of the matrices in Figure 6.8, and for each species combination see how 

many of the four wells have a corresponding value that is either below 0.2 (similar) or above 0.5 

(dissimilar)), and by looking at species combinations that have significant positive or negative 

correlations in common with the overall correlation matrix. The results of this analysis are shown in 

Figure 6.9, note that since no significant negative correlations were found for the overall correlation 

matrix of Figure 6.7 all elements in the bottom right matrix have a value of zero (there can't be any 

shared negative correlations if one matrix has no negative correlations). From this analysis we can 

create three groupings in the species combinations: 

 

• Species combinations that often share similar correlations between individual wells and the 

overall trend, these are the dark-coloured elements in the top and bottom left matrices of 

Figure 6.9 and include: Br-Cl, Pb-Cl, Pb-Zn, K-Ca, Mn-Ca, and Mn-K. These combinations 

could be used to indicate general trends that are shared between most individual wells. 

• Species combinations that show large differences in correlation between individual wells and 

the overall trend, these correspond to dark-coloured elements in the top right matrix and 
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include: Br-HCO3, SO4-Br, Ca-SO4, K-SO4, Mg-Ca, and Ba-Na. These combinations could 

be used to characterize individual wells, as they show large variance. 

• Species combinations that show neither close similarities, nor large differences. These are 

the largest group of species combinations. From a characterization perspective, these 

combinations would be of lesser interest. 

One interesting thing to note is that for the species combinations that share similar correlations 

between the wells, there are at most three wells with similar correlations values, and always one that 

stands out from the rest. For 4 out of the 6 of these species combinations it is the Sønderborg well 

that does not share the correlation with the overall correlation matrix. This seems to indicate that the 

Sønderborg is the most different from the other wells in this analysis. 

 

 
Figure 6.9 Similarity occurrence matrices. Colours indicate how many of the four individual 

wells show similarity with the overall data set 

 

 
In this section correlation analysis was performed on the formation water composition data from the 

PERFORM database. Analyses were performed for the four wells that had the most amount of 

measurements available. Using the resulting correlation coefficient values, the four wells were 

compared to each other, as well as the correlations found in the total dataset. From the comparison 

between the four wells, it was found that the Schönebeck and Thisted well data are quite similar. 
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However, due to their lack of significant negative correlations, the suspicion arose that some of the 

samples might have been diluted, skewing the results. No other clear explanation for their similarity 

could be identified.  

 

In the second part of the analysis, the four individual wells were compared to the correlation 

coefficients of the entire data set. From this a number of species-pairs were identified that either 

showed large similarity between the individual wells and the overall trend, or large variations. These 

pairs could in the future be used to characterize the trends of an individual well with respect to 

general trends. For instance, it might be of interest to further investigate a well whose correlation 

between potassium and calcium (a pair that normally shows similar correlation values ross wells) 

deviates significantly from the general trends. 

 

The correlation analysis of the four individual wells indicates that the correlation result of the Groß 

Schönebeck data as well as the Thisted data is very similar to the total correlation result. The total 

correlation relates all samples in the entire dataset. Contrary, the Margretheholm data differ largely 

in the correlation between Na and Cl, as well as K and Na, whereas the Sønderborg data differ in 

the correlation between K and Cl, Si and Ca and Mn and K. 

 

 

6.2.3 Example: The Slochteren and Delft reservoirs  

Calcite scaling is a commonly observed issue in geothermal installations. The occurrence of calcite 
scaling is controlled by pressure and temperature changes, but also by several geological and 
geochemical parameters such as mineralogy of the reservoir, CO2 content, amount of dissolved Ca 
and HCO3 in the brine. The amount of dissolved CO2 in the reservoir appears to greatly influence the 
risk of scaling, especially when CO2 degasses. The gas, water and mineralogical data in the 
database was analysed in order to constrain the relations between these parameters. 
 

CO2 concentrations  

There are two reservoirs from which the majority of the geothermal sites in the Netherlands produce. 
These are the Slochteren reservoir (part of the upper Rotliegend) and the Delft sandstone reservoir 
(part of the Schieland group). The Slochteren Formation consists of pink/red sandstones and 
conglomerates deposited in an aeolian- or marine environment. The Delft sandstone member is a 
fluvial deposit consisting of sandstone layers with clay intervals (Van Adrichem Boogaert & Kouwe, 
1993). Figure 6.12 shows the stratigraphy of the Dutch subsurface with red circles around the interval 
of the two reservoirs. In figure 6.10 and 6.11 the CO2 concentrations that were measured in gas 
analyses at the sites are plotted. The figures show that even though the data is scattered the average 
CO2 concentration measured in the Slochteren reservoir is significantly higher at 22% in comparison 
to 6% in the Delft sandstone reservoir. This implies that the CO2 concentrations can be correlated to 
the different reservoirs.  
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Figure 6.10 CO2 concentration in mole % measured in wells that produce from the Slochteren 
reservoir 
 
 
 

 
 
Figure 6.11 CO2 concentration in mole % measured in wells that produce from the Delft 
sandstone reservoir 
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Figure 6.12 Lithostratigraphic column with red circles indicating the location of the 
Slochteren formation and the Delft sandstone member. (Van Adrichem Boogaert & Kouwe, 
1993)  
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Correlation analysis 
In order to characterize similarities between the two reservoirs and to observe overall trends a 
correlation analysis was carried out, using the same approach as used in Section 6.2. This was done 
for two cases. First a correlation analysis was done using the formation water compositions. The 
approach in the first analysis was to not target specific elements but to use the whole dataset. In this 
way any bias is avoided, and possible unknown relations can be identified. 
 
In the second analysis a different approach was executed. The parameters that are known to relate 
to scaling processes (not only for calcite scaling but also barite scaling) were used in the analysis. 
Calcium, bicarbonate, partial pressure of CO2 and CO2 mol% and Calcite weight % were included to 
investigate the process of calcite scaling. Magnesium is included because it can replace calcium to 
create dolomite. Strontium and barium are included to investigate possible processes related to 
barite scaling.  
 
The results are presented in Figures 6.13 and 6.14. With respect to the formation water analysis for 
Slochteren, there is a strong correlation between sodium/potassium and sodium/barium. Another 
correlation is between magnesium/strontium and calcium. In the Delft reservoir analysis these 
relations are not observed. There is a negative correlation for both reservoirs between sulphate and 
calcium. There are clearly stronger correlations for the Slochteren in comparison with the Delft data. 
In the second analysis in Figure 6.14 a similar overall pattern can be discerned of stronger 
correlations in the Slochteren data with respect to the Delft data. The negative correlation between 
Ca and HCO3 was not expected since these are the elements that form calcite minerals and therefore 
should be positively correlated (see equation 1). 
 

𝐶𝑎𝐶𝑂3(𝑠) + 𝐻2𝐶𝑂3(𝑎𝑞) ⇌ 𝐶𝑎2+(𝑎𝑞) + 2𝐻𝐶𝑂3
−(𝑎𝑞) (equation 1) 

 
Another issue for the correlation analysis of the second case, especially for the delft is the low 
number of datapoints, which makes the results hard to interpret (see X’s in figure 6.9).  
 

 
Figure 6.13 Correlation analysis of formation water compositions of the Slochteren reservoir 
and Delft sandstone reservoir 
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Figure 6.14 Correlation analysis of scaling parameters for the Slochteren reservoir and Delft 
sandstone reservoir 
 
What makes these correlation analyses difficult to interpret is also the natural variability which is 
occurring in the formation water and which is hard to constrain. This is shown in Table 6.1 where for 
each element the average, minimum value, maximum value and standard deviation is calculated. 
Especially the standard deviation demonstrates the huge variation in the data with for example a 
standard deviation of 1253.2 mg/l for calcium, where the average is 4689.8 mg/l. This is a deviation 
of 27% which is very large. In the Delft sandstone data, elements with extremely high standard 
deviation percentages are observed. For example, potassium with 262% and sulphate with 222%. 
This happens when the standard deviation is larger than the average value. 
 
Table 6.1 Average, minimum, maximum and standard deviation for each element in the 
formation water data 

 
 
It has become clear that even though the CO2 concentrations do appear to correlate to the different 
reservoirs, the overall variability of the data is very extreme (Table 6.1). This can be caused by 
natural variability but could also be the result of different lab procedures or analysis techniques. The 
difficulty is that the reports from the labs that performed the analyses do not state the exact method 
and that sometimes the original report is not even part of the delivered documents. Another issue is 
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that for some elements the data density is very low (<5 data points), which makes the results even 
more unreliable. 
 
A next step could be a very thorough quality control of the dataset, eliminating elements with low 
data density or unreliable sources. What would also help is more data, which might be difficult in this 
case since the data is often confidential and hard to come by. 

 

6.3 Thermodynamic calculations 
 

Geochemical speciation codes allow calculation of the saturation state (): 
 

Ω =  
IAP

Ksp
=

(X)Ac(Y)Ac

(X)Eq(Y)Eq
, 

where Ksp refers to the solubility product, which gives the equilibrium activities of the ions that form 
the solid (i.e., (X)Eq and (Y)Eq in the equation above) and IAP, to the product of the actual activities 

((X)Ac and (Y)Ac). Precipitation of solids requires supersaturation, i.e.,  > 1 or log() > 0. In addition, 
the geochemical calculations readily give the charge balance for the determined composition of the 
water. Given that solutions must be charge neutral, deviations from charge neutrality allows us to 
gauge the quality for the datasets we have assembled. Usually, a charge imbalance of ± 5% is 
accepted for data of reasonable quality (Appelo and Postma, 2005). 
 

6.3.1 Methods 
In our calculations, we have used the geochemical speciation software PHREEQC version 3.4 
(Parkhurst and Appelo, 2013). The software features a variety of databases that employ different 
schemes for activity corrections and contains different thermodynamic data (e.g., reaction constants 
and their temperature and pressure dependence). This difference causes variation in results from 
calculations depending on the choice of database. Therefore, a benchmarking is currently conducted 
as part of WP2 of the PERFORM project.  
 
From the benchmarking of the databases so far, the Pitzer database, that is currently distributed with 
the software (Appelo, 2015), performs well for a range of phases and water compositions. Thus, we 
have used this database in our calculations. It is able to predict correctly the solubility of the two 
most important phases in this context, calcite and barite, in NaCl solutions at a variety of pressures 
(P), temperatures (T), and concentrations (C). However, initial results from the benchmarking 
suggests that predictions of the solubility of the two phases in CaCl2 rich solutions are substantially 
less accurate. So far, calculations result in underprediction of calcite solubility in the tested T range 
10-60 °C and overprediction of barite solubility above 100 °C. Three sites, Margretheholm, Groß 
Schönebeck and IJsselmuiden, extract waters with high CaCl2 concentrations, and results for these 
sites should be interpreted cautiously. 
 
The number of parameters that have been measured for the solutions vary with the individual dataset. 
Some datasets, for example, do not feature measured pH. In the calculations, the pH of such 
solutions was set to 7. Other datasets do not contain analysis of all major ions. To avoid errors 
associated with such incomplete data, solutions with high ionic strength (above 1) but no analysis 
for a major element, i.e., Cl-, were discarded. For some waters, we have data for only dissolved 
components in the water, but for others, measurements exist of the concentration of dissolved 
gasses, including CO2 whose partitioning influence pH. Consequently, two types of calculations have 
been conducted.  
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Firstly, the saturation state was calculated for phases whose solubility is largely insensitive to pH 
variation and gas content. The calculations were performed using conditions resembling those 
expected after cooling of the waters at the heat exchanger (25 °C and 15 atm). Secondly, 
calculations were performed for down hole conditions to understand the saturation state of 
carbonates and sulphates in the formation waters. For these calculations: 
 

1. Datasets with no data for HCO3
- were discarded.   

2. Water and gas data for sites were coupled in the priority: 
a. Data for water and gas sampled at the same time were paired 
b. Where sampled at the same depth, but different time, the water and gas samples 

were paired. 
c. For samples taken at different time and at the surface, average values of gas 

compositions were calculated and paired with solution compositions. 
3. For samples with no measured T at Groß Schönebeck, the thermal gradient based on linear 

regression of T vs depth for other samples at the site was used to determine sample T. 
4. In the absence of downhole T measurements, the production T at the time of sampling was 

used. 
5. In the absence of measured downhole pressure, the calculated hydrostatic pressure at the 

average production depth was used. 

6.3.2 Results 
The charge balance of the datasets for the various solutions is shown in Table A.1 in the appendix 
expressed as %error: 
 

%error =  
∑ Zi∗Ci

∑|Zi| ∗Ci
∗ 100% , 

 

where Zi and Ci refers to the charge and concentration of ion i and |Zi|*Ci to the total charge of the 
ions. Most datasets for samples have little error in charge balance beyond what can be expected 
from the analytical uncertainties. However, two datasets possess error of more than ±15 %, 
suggesting that the concentration for some of the elements is inaccurate (Sample ID 202, Mont-
Blanc-S138 and Sample ID 204, Rothenbrunnen-SSTH). To give an impression of the charge 
distribution among major ions, examples for the waters from six sites associated with PERFORM is 
given in Figure 6.15 in the form of Stiff diagrams, which portrays the distribution of charge among 
the main ions.  

 
 
Figure 6.15. Stiff diagram for the waters of 6 sites associated with PERFORM, showing the 
amount of charge associated with major ions in moles of equivalents per litre.  
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Table A.1 in the appendix also gives the calculated saturation state for the datasets at 25 °C and 15 

atm expressed as log() for barite, celestite, gypsum, halite and amorphous silica. For many of the 

waters, the phases are undersaturated (i.e., log() <0). Barite, however, is typically supersaturated, 

with log() reaching almost 2 for a couple of sites (Figure 6.16A). Of the sites that features the 
highest saturation, evidence for barite precipitation exists downhole at Groß Schönebeck, and at the 
surface at GeneSys Horstberg, and to minor extend, for stagnant surface waters at Margretheholm 
(database, Regenspurg et al., 2015, Schulz, 2009). In addition, anonymous sites of the Upper Rhine 
Graben are reported to be plagued by barite scales (Haas-Nüesch et al., 2018). Quite likely, Insheim 

is among the sites sampled in this study. For these sites, calculations yield log( ) > 1 for at least 
some solutions. Caution should be display when interpreting the results, because of uncertainties in 
the calculations and because precipitation may have affected the composition of the solution both 

prior and during sampling. Nevertheless, the data suggests that sites producing solutions with log() > 
1 should be aware that an elevated risk exists for barite scaling (marked by grey area in Fig. 6.16A). 
At lower supersaturation, slow nucleation kinetics of barite most likely means that significant barite 
scale will not form. 
 
The results of calculations downhole in wells including the influence of dissolved gasses is shown in 
Table A.2 in the appendix. Figure 6.16B illustrates the results for datasets where CaCl2 
concentrations and temperatures are such that calculations should be reliable. For most sites, the 

calculations yield log() close to 0 for barite and/or calcite (i.e., with average values deviating from 
0 by less that ± 0.3 unit), suggesting that the formation waters are at equilibrium with one or both of 
the phases. Exceptions from equilibrium include the dataset from Den Haag, where the formation 
water is predicted to be substantially supersaturated with respect to barite, and one of the datasets 
from Thisted Varmeforsyning and from Honselersdijk, where formation waters are indicated to be 
significantly undersaturated with respect to calcite. Why these datasets are outlying is currently 
unknown, but we note that the gas concentrations in the two datasets from Thisted Varmeforsyning 
and from Honselersdijk differ from the other dataset(s) from the sites. 
 
Taken together, the geochemical calculations indicate that many geothermal sites produce from 
formation waters that are in equilibrium with barite and/or calcite. The solubility of barite decreases 
with decreasing T and P, meaning that the thermodynamic drive for precipitation is higher after 
cooling at the surface, i.e., the saturation indices are higher at the surface after cooling as we observe.  
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Figure 6.16 A. Saturation indices for barite at 25 °C and 15 atm. B. Downhole saturation 
indices for barite and calcite  
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7   Discussion 
A database is no better than the quality of the individual datasets it consists of. In our analyses of 
the data, we have applied several tools that allow detection of anomalous data. The principal 
component analysis, which allows the detection of outliers within datasets from the same site, 
generally shows agreement for the determined chemical compositions. Similarly, the calculated 
charge balance for the datasets is acceptable apart from two datasets. The principal component 
analysis does provide evidence for some dilution and/or evaporation for samples taken at Groß 
Schönebeck and a few additional sites. In support of this interpretation, the correlation analysis 
shows that concentrations of elements at Groß Schönebeck are positively correlated broadly across 
the datasets as would be expected from dilution. Manual inspection of the concentrations of elements 
and ions in the Groß Schönebeck dataset suggests that the degree of dilution is fairly small, and not 
detrimental for the use of the datasets. Due to the very high salinity of fluids in Groß Schönebeck 
(265 g/L), analysis of samples is very challenging. Brine samples have to be highly diluted before 
analysing with ICP.  
 
For the production data, machine learning techniques identified anomalies in some of the sensor 
measurements at the Sønderborg site. It is our hope that the amount of data in the database will 
grow. Thus, in time machine learning techniques might be applicable to the part of the database 
containing chemical compositions. Overall, the techniques we have applied to analyse the contents 
of the database indicates that the vast majority of data is untainted by substantial errors and that it 
can form the basis for sound interpretations, albeit the uncertainties associated with the challenges 
of intact sampling of hot, pressurised fluids should be kept in mind. 
 

7.1 Scaling  
Precipitation of minerals (scaling), typically observed in installations of geothermal sites, represents 
a common problem during geothermal exploitation (Boch et al. 2017, Hartog, 2015; Schreiber et al., 
2016). Scaling is related to disturbance in the chemical balance, e.g. as a result of temperature or 
pressure change (and potential gas exsolution) or because of mixing. Scaling can affect both the 
productivity and injectivity, as the scaling products may result in clogging of the surface installation, 
wells, perforations or pores of the reservoir rock (Ungemach, 2003, Blöcher et al., 2016, Gallup, 
2009, Heshauss et al. 2013). The scaling material is commonly consisting of iron compounds 
(sulphides, oxides), carbonates (e.g., calcite, aragonite), sulphates (e.g., barite), and at high salinity, 
chlorides (e.g., laurionite, halite) (Regenspurg et al., 2015). 
 
The correlation analysis of water compositions show that Ba is generally negatively correlated with 
SO4. This is most clear for sites producing deeper seated, saline waters (plot of the correlation in 
Figure 7.1). Similarly, a negative correlation exists for Ca concentration and the concentration of the 
CO3

2- ion calculated from the measured pH and HCO3
- concentration and the equilibrium reaction:  

 
HCO3

- = CO3
2- + H+   K = 10-10.3  

 
Making the rough assumption that concentrations and activities are equal, the CO3

2- concentration 
can then be calculated as: 
 
[CO3

2-] = 10-10.3  * [HCO3
-] / [H+] 

 
where brackets denote activities.  
 
Albeit the plots do not take activity corrections into account, the samples align with a slope similar to 
the line representing water-solid equilibrium at far from equilibrium, where activities equal 
concentrations. This observation imply that the concentrations of the ions have at some point been 
influenced by dissolution and or precipitation of barite and calcite so that solutions approached 
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equilibrium. Similarly, thermodynamic calculations indicate that calcite and/or barite are at 
equilibrium in the formation waters at many sites. Consistent with these analyses, the X-ray 
diffraction data we have collected for material from the formations also shows the presence of calcite. 
Barite was not detected with this technique, most likely because it is present in amounts beneath the 
detection limit of XRD. 
 
The solubility of calcite increases with decreasing temperature, meaning that cooling the water would 
not increase the thermodynamic drive for precipitation. However, degassing of carbon dioxide (CO2(g)) 
increases the calcium carbonate saturation, driving the reaction below to the right. 
 
Ca2+ + 2 HCO3

- = CaCO3 + CO2(g) + H2O.  
 
This means that formation of bubbles as pressure decreases when solutions rise in the production 
well can cause precipitation of carbonate scales. In our database, chemical analysis of sampled 
solids regularly yields significant Ca concentration, and for several of the datasets, bubbling was 
reported during the dissolution of the material as would be expected if carbonate minerals were 
present.  Thus, calcium carbonate most likely forms in many plants. For the Pijnacker-Nootdorp site, 
calcite (and iron carbonate) scaling has been observed within the surface facilities in the first year of 
production when the installation was operated under lower pressure (personal communication, 
Wasch et al., 2019). The scaling was related to a high CO2 content dissolved in the formation brine 
which outgassed in the gas separation tank. In order to prevent the precipitation of carbonates, the 
operator has increased the reservoir pressure from 2 to 5 bar, which causes less CO2 degassing, 
maintains a higher pH of the geothermal water and prevents scaling. This specific case highlights 
the possibilities of optimizing geothermal operations to prevent scaling and the power of numerical 
tools in designing better operational strategies (Wasch et al., 2019).  
 

 
Figure 7.1. A) The correlation between Ca and calculated CO3 concentration for all datasets 
with measured Ca, HCO3 and pH and B) between Ba and SO4 concentration excluding the low 
salinity datasets from China (right). Lines denote the solubility of calcite and barite at infinite 
dilution. 
 
Barite solubility decreases with decreasing temperature. For this mineral, cooling of water at the 
surface decreases solubility and increases the driving force for precipitation. For solids to form they 
must, however, first nucleate which requires a threshold value for saturation index to be overcome 
(e.g., Vekilov 2010). Calculations for an oil well indicate that the threshold saturation for nucleation 

most likely decrease with T, with log() > 0.5 resulting in nucleation and growth of barite deep in the 
well because of mixing of incompatible fluids (manuscript in preparation). The calculations performed 
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here indicate that the threshold log() value for nucleation is substantially larger at 25 °C, most likely 

exceeding log() = 1. This threshold value is very poorly defined and its dependence on solution 
composition is unknown.  
 
In addition, thermodynamic calculations are uncertain in CaCl2 rich solutions. For barite, this most 
likely represents inadequate accounting for the temperature dependence of the stability of the 
CaSO4

0 ion pair in the databases. Recent data indicate a decrease in ion pair stability with 
decreasing temperature by a factor of ~3 from 25 to 150 °C (Dai et al., 2015), meaning that the ion 
pair would to large degree disassociate upon cooling, increasing the concentration of free SO4

2-. If 
so, this would entail that the barite solubility might be substantially affected by temperature changes 
in Ca-rich brines, and that sites producing from hot, Ca-rich formation waters are at higher risk for 
barite scaling. Metal substitution of earth alkalines, such as Ca2+ and Sr2+, in barite additionally 
complicates proper precipitation prediction by modelling. In addition, barite scaling can occur if 
simultaneous production from separate formations results in mixing of two incompatible fluids.   
 
Based on the analyses of the data in the database we conclude that:  
 
1) Calcium carbonate scaling can be largely avoided by maintaining an operational pressure 
exceeding the bubbling point. The operators of the plants are for most part able to do so. However, 
geothermal systems with high bubble points or large high temperature geothermal plants might 
require additional calcite scale prevention measures. 
 
2) In general, barite precipitate upon cooling. Barite scaling might, however, be more likely to form 
at sites that produce water from hot, Ca-rich brines. In addition, the scaling risk could be enhanced 
at sites that produce from several formations whose minerals have very different chemical 
compositions, which could yield incompatible waters. 
 

3) If threshold log() values for nucleation were better defined and if calculations of saturation states 
were accurate for a broader range of solution compositions (i.e., in Ca-rich brines), we foresee that 
the extend of barite formation could be predicted. If formation water composition and temperature 
can be estimated prior to drilling, risks might even be assessable beforehand.   
 
 

7.2 Corrosion  
The interaction between brine and metallic elements in the installations at sites commonly results in 
corrosion, whose reaction products may cause operational problems. Especially sites with steel 
tubing experience such. Corrosion can occur with a variety of oxidants. It is particularly rapid through 
redox reaction with oxygen, which cause the formation of Fe oxides (rust) with variable degree of 
hydration, e.g.: 
 
4 Fe0 + 3 O2 + n H2O= Fe2O3 * n H2O 
 
In the absence of O2, corrosion occurs anaerobically at much slower rate using water as the oxidant: 
 
Fe0 + H2O = Fe2+ + H2 + 2 OH- 
 
This reaction produces hydrogen (H2). It also increases pH locally so that the solubility of ferrous 
hydroxide may be exceeded. At such places, the net reaction becomes: 
 
Fe0 + 2H2O = Fe(OH)2 + H2  
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Ferrous hydroxide is not very stable thermodynamically and usually dissolves if pH is not above 7.5 
or so. Thus, this material is not able to migrate from the site of formation through the waters in the 
wells at the vast majorities of the sites where pH is reported. At temperatures above ~75 °C, however, 
ferrous hydroxide can itself reduce the protons in water at appreciable rates, leading to the formation 
of the mixed valent iron oxide magnetite, which is thermodynamically very stable: 
 
3 Fe(OH)2 = Fe(II)Fe(III)2O4 + H2 + 2H2O 
 
Thus, formation of smaller amounts of Fe oxides from corrosion of infrastructure with metallic iron is 
unavoidable. If temperatures are sufficient or oxidation occurs with O2, the Fe oxides are likely to be 
thermodynamically stable. The formed Fe oxides are typically nanoparticulate, aggregated to 
variable degree, and they may migrate with the flow, which could cause clogging of the injection well. 
Typically, however, they form surface coatings that protect the metallic installations from further 
corrosion if conditions are not unfavourable. Thus, the slow anaerobic corrosion with water as the 
oxidant generally causes little harm. The ingress of oxygen, however, can dramatically increase 
corrosion rates. Hence, the geothermal operations are typically operated at significant overpressure 
to avoid influx of O2 (and minimize formation of CO2). 
 
At the Sønderborg site, which is characterized by moderate salinity and high sulphate concentration, 
material sampled from the water after cleaning the inside of the injection well consisted of mainly Fe 
oxides. These may be relict mill scale from the pipe manufacturing that was not properly removed 
prior to well instalment together with corrosion products that formed during operation. Support of the 
latter option is given by corrosion monitoring in a side stream loop at the injection well, which shows 
quite high corrosion rate of steel, and points to oxygen ingress as the main reason. This assessment 
is based on several independent test methods including corrosion coupons, galvanic probe and ER 
probe. Analyses of bottom-hole samples show the presence of iron oxides that do not dissolve in 
lower concentration of acids (1% HCl and 1% HNO3) as well as higher concentration of acids (5% 
HCl and 2% HF). Such deposits have also been identified as mill scale in leftover tubing located at 
the site, suggesting that relict Fe oxide coatings also exists on the installed well tubing. Corrosion 
taking place in the system could promote the release of the mill scale in the well tubing, allowing the 
Fe oxides to migrate. Regardless of origin, the Fe oxides may well have accumulated at the sand 
screens in the injection well or within the gravel pack, contributing to the injection problems at the 
Sønderborg site. 
 
Samples taken slightly later in the surface installations at the site contained ZnS and PbS, suggesting 
that sulphate reducing bacteria generate sulphide. Consistent with this, sequencing of DNA from 
water samples indicates the presence of microorganisms carrying the dissimilatory sulphite 
reductase gene, albeit they exist in small amounts. Only one type of gene sequence was identified, 
which is highly related to that of the halophile bacterium Desulfotomaculum halophilum. This 
identification of sulphate reducing bacteria in the infrastructure of geothermal operation echoes 
findings at other sites, including that at Neubrandenburg (Würdemann et al., 2014), where waters 
also contains high sulphate concentration (Figure 7.2). 
 
Sulphate reducing bacteria greatly increase anaerobic corrosions rates if present in substantial 
amounts because the sulphide production destabilizes the passivating Fe oxide coatings (Hamilton, 
1985). Thus, their growth can be deleterious to much infrastructure. For the bacteria to thrive, though, 
several components are needed. An electron donor is needed to reduce sulphate to sulphide. This 
could be hydrogen present naturally in the environment or produced from anaerobic corrosion of 
metallic iron in the infrastructure. Based on a limited number of gas measurements, H2 content may 
be up to 3.5 mM. If so, H2 will not limit the bacterial growth. Similarly, the sulphate concentration is 
high, 700-900 mg/L (Figure 7.2), and would not limit growth either. Potentially, the extend of growth 
and associated sulphide generation is limited by the availability of assimilable organic carbon, which 
could mean that microbially induced corrosion rates are fairly low. Methods are available to gauge 
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the amount of assimilable organic carbon, and if metal sulphides are detected at geothermal sites, it 
would be prudent to apply them to gauge the potential for microbial growth and the induced corrosion. 
 

 
Figure 7.2 Concentration of SO4

2- as a function of chloride concentration. 
 
At the Groß Schönebeck and Margretheholm sites, analyses in our database of sampled solids 
display elevated concentrations of Cu or Pb and X-ray diffraction shows the presence of metallic Cu 
(Cu0) or Pb (Pb0). The Cu0 and Pb0 form from corrosion through redox reaction of dissolved metal 
ions with metallic iron present in the infrastructure, for example: 
 
Fe0 + Pb2+ = Pb0 + Fe2+ 
 
At the Margretheholm site, penetrating corrosion of steel has been observed in local areas in the 
surface installations under influence of high flow, possibly reflecting this type of corrosion (i.e. 
galvanic corrosion). At Groß Schönebeck, corrosion products of the casing have been observed 
(magnetite, Fe3O4) and hydrogen (H2) gas has been observed in high concentrations. A corrosion 
study has been performed over several years. For this purpose, a corrosion test rack was installed 
as a bypass of the main fluid flow at the site. In the test rack different components and materials 
were tested for their corrosion behaviour during several years (Saadat et al., 2014). In addition to 
the Groß Schönebeck and Margretheholm sites, the open literature indicates that the sites at 
IJsselmuiden, and Neustadt also suffer from formation of Pb0 (e.g., Doornenbal et al., 2019). 
 
The principal component analysis shows that the four sites are among the five sites in the database 
with the highest score for PC-1. The fifth site, Genesys Horstberg, has not been in proper operation 
because sufficient amounts of water could not be injected into the formed fractures, meaning that 
Pb0 or Cu0 might not have had the time to accumulate to notable quantities at the site. For all 
operating sites, the corrosion with Cu and Pb as oxidants appears to be systematically related with 
brine composition and a high score for PC-1 appears to be an indicator for the risk of corrosion at 
high salinities. 
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Figure 7.3 Pb concentration as a function of Cl concentration for key sites. Waters are 
concentrated in Pb in Groß Schönebeck and to slightly lesser extend in Margretheholm (MAH). 
At Insheim (not shown), the Cl concentration is only 30,000 – 60,000 mg/L (<75,000 mg/L), and 
the Pb concentration is rather high, c. 1.6 mg/L.   
 
 

 
Figure 7.4 Cu concentration as a function of Cl concentration. High concentration of Cu is 

observed in both Groß Schönebeck and Margretheholm (MAH). At Insheim (not shown), the Cl 
concentration is only 30,000 – 60,000 mg/L, and the Cu concentration is low, c. 0.024 mg/L.  
 
The correlation analysis shows that Pb and Cl- concentrations are correlated generally (plot in Figure 
7.3 for Pb). The same feature applies for Cu (Figure 7.4). Given that i) chloride is an aggressive ion, 
which generally increases corrosion rates, and ii) rates of reactions typically depend on the 
concentration of the reactants (in this case the dissolved metal and Fe0), the positive correlation of 
concentrations of the two metals ions and Cl- supports the hypothesis that the extend of corrosion 
using dissolved metals ions as oxidants might systematically depend on the brine composition. We 
note that the less saline solution from the Insheim site contain higher Pb concentration compared to 
Margretheholm (1.6 mg/L versus 0.8 mg/L), but that only limited formation of Pb0 occurs at Insheim 
(assuming that this is indeed the site described by Haas-Nüesch et al. 2018). This indicate that 
elevated chloride concentrations are required for extensive corrosion. Based on the observations, 
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we conclude that geothermal plants utilizing highly saline brines operate at elevated risk of corrosion, 
because the concentration of both chloride and dissolved metals are high, and that this risk should 
be taken into account when selecting the type of material for the infrastructure. 
 
At the Groß Schönebeck and Margretheholm sites, the most substantial amounts of Cu0 and Pb0 
were found on infrastructure in contact with hot water, where reaction kinetics would be generally 
faster. This effect is supported by the results of corrosion testing of steel in artificial brine, added 
small amounts of Pb2+. Thus, we propose that the producing well with its hot water is particularly 
prone to this type of corrosion, whereas the injection well, where cold water is transmitted, should 
experience the corrosion to smaller extent. Given that the injection well is particularly vulnerable to 
clogging, this is somewhat encouraging. However, operations in very saline fluids should ensure that 
filters are adequate, so that particulate Cu0 and Pb0 can be removed prior to injection, and waters 
should not be allowed to pass uncooled through the surface installations into the injection well, which 
has occurred for some of the sites during testing phases or start up after winter. 
 
The presence of sulphate-reducing bacteria has been observed in the Sønderborg and Pyrzyce sites 
located in Denmark and Poland, respectively. The bacterial activity generally leads to chemical 
changes in the geothermal water circuit, resulting in formation of solids and shift in pH. Bacterial 
activity combined with the presence of an electron donor such as organic material or dissolved 
hydrogen-sulphide (H2S) gas in the geothermal water, accelerates corrosion processes and leads to 
precipitation of sulphide minerals (e.g. ZnS and PbS). 
 
Based on the analyses of the data in the database we conclude that:  
 
1) Corrosion by oxygen ingress occurs at high rates and may cause the formation of substantial 
amounts of Fe oxides that can potentially cause clogging of sand screens in injection wells. 
Therefore, introduction of oxygen in the geothermal water stream should be avoided. Most operators 
of the plants are for most part able to do so by maintaining an increased operation pressure.  
 
2) Corrosion related to sulphide formation in plants with high sulphate concentrations in the formation 
water may be a process causing decreased injectivity due to clogging of sand screens with corrosion 
products. However, the importance of this process is not fully understood and should be subject to 
future studies.  
 
3) Galvanic corrosion by dissolved Pb or Cu seems to be a common problem in geothermal plants 
where dissolved Pb2+ or Cu2+ are present in the formation water together with elevated 
concentrations of chloride. Apparently, the threshold chloride concentration for galvanic corrosion to 
occur is around 100,000 mg/L, since at geothermal plants with lower chloride concentration and Pb2+ 
in the formation water, galvanic corrosion is only minor. Thus, especially at geothermal with elevated 
chloride concentrations measures to avoid galvanic corrosion should be taken, either by removing 
Pb2+ or Cu2+ from the produced water or by ensuring that the plant infrastructure is constructed of 
material not prudent to galvanic corrosion. 
 
4) Use of improperly cleaned tubings at installation of geothermal wells should be avoided, since e.g. 
the release of relict mill scale may take place during the operation of the geothermal plant. The 
release of relict mill scale may potentially be promoted by corrosion. 
 
5) Several different corrosion processes may take place in the same geothermal well, resulting in a 
potential amplification of problems. 
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8   Conclusions 
At the current stage of the PERFORM project, we have succeeded in establishing a knowledge 

database containing information on operational, chemical and physical aspects of geothermal 

energy production from a total of 26 geothermal sites across Europe and another ~40 geothermal 

wells. The amount of data representing each entity in the database varies depending on the data 

source, varying from detailed information from eight key European geothermal sites to single water 

analyses from geothermal wells collected from the literature. The database is made available through 

the PERFORM website. 

 

At the beginning of this project, information on geothermal operations was limited and scattered in 

the open literature, complicating analysis. The PERFORM database has allowed more reliable data 

analysis because of the higher amount of data and has also facilitated the comparison of processes 

and problems observed at individual sites. This is demonstrated in Chapter 6 where various types of 

analyses were applied to the data; Principal Component Analysis (PCA) and correlation analysis. 

 

Production data from sensors (timeseries) from the Sønderborg wells were analysed using machine 

learning techniques, which was able to identify anomalies in the datasets and to construct estimates 

of missing data in series. Given that anomalies in sensor data can indicate the occurrence of 

processes harmful to the operation, their automated detection is likely to be of value to the operators. 

 

Water composition data were analysed using Principal Component Analysis (PCA), correlation 

analysis and thermodynamic modelling, and the results were coupled to the information about solids 

in the database. The data analysis indicates that formation waters often are in equilibrium with calcite 

and that smaller amounts of calcite typically forms during the geothermal operations, probably 

because of minor CO2 degassing. Overall, however, operators are able to manage the calcite scale 

formation. Many formation waters contain Ba and SO4 in amounts that indicate down-hole equilibrium 

with barite. Because the solubility of barite (BaSO4) decreases with decreasing temperature, such 

waters become supersaturated after cooling. Nonetheless, the saturation threshold for nucleation is 

rarely exceeded to a degree that allows barite scale formation. At one site, Groß Schönebeck, 

substantial amounts of barite forms in the production well. The formation waters at this site are hot 

and very Ca rich and we propose that the barite formation relates to the significant decrease of the 

stability of the CaSO4 ion pair with decreasing temperature.  

 

With respect to corrosion, the analyses indicate that galvanic corrosion with Pb and/or Cu as oxidants 

poses the largest problem for geothermal operations. This type of corrosion occurs when formation 

waters are hot and very chloride rich. Our evaluations signify that the chloride concentration should 

exceed ~100,000 mg/L to maintain extensive corrosion. We interpret that this reflects the aggressive 

nature of Cl during pitting corrosion and the correlation of the Pb and Cu concentrations in formation 

waters with that of Cl. For one site, Sønderborg, the installed well tubing most likely contained Fe 

oxide mill scale from the manufacturing, which was likely mobilised by corrosion from O2 ingress. 

 

Collectively, the analyses of the data in the database indicate that geothermal exploitation faces a 

range of (geo-)chemical challenges, but that many of these can be adequately managed by 

maintaining sufficiently high operational pressure to minimise O2 ingress and CO2 degassing. Thus 

a high operational pressure could limit the encountered scaling and corrosion problems. When 

waters are hot and Cl rich, however, the exploitation operates at elevated risk of galvanic corrosion 

in the production well. If such conditions are known beforehand, materials can be selected for the 

infrastructure to mitigate the problem, e.g. composite casing may be used instead of steel tubing. 

Alternatively, efficient particle filters could be installed to avoid migration of corrosion products into 
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the more sensitive injection well and meticulous monitoring of corrosion could allow timely application 

of corrosion inhibitors or filters for Pb and Cu removal. Such measures should ideally be active at 

depth in the production well, which complicates their application. High-tech particle and cation filters 

along with adsorption systems are currently under development within the PERFORM WP3 program.  

 

If waters are also Ca rich, our results indicate that barite scale formation after water cooling becomes 

likely and that scaling inhibitors or Ba removing filters may be required.  

 

In general, early identification of potential problems and implementation of technical solutions, such 

as those developed in the upcoming period of the PERFORM project, are of great importance. We 

believe that continued development and use of the PERFORM knowledge database may broaden 

our understanding of the challenges faced during geothermal operations and facilitate early stage 

identification of problems. 

 

Apart from the knowledge database, WP 1 includes data compilation and interpretations. All joining 

countries have contributed to data collection and the subsequent evaluation of the geothermal data. 

To our knowledge, geothermal data have not previously been collected and stored in a database at 

a trans-national level. The set-up of the PERFORM database and website makes it possible to share 

a comprehensive trans-national dataset, forming the basis of comparing the performance of the 

different geothermal sites across borders. The data evaluation considers, among other matters, the 

common scaling and corrosion problems that generally pose a challenge in geothermal exploration. 

The data in the database - combined with data analyses and discussions on geothermal questions 

(Chapter 7) - have led to a wider insight into operational issues than could have been achieved from 

a national point of view. The learnings from the PERFORM database is the start of being able to 

recognise and possibly mitigate obstacles at an early stage. 
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Appendix 

  
Table A.1. Calculated %error and saturation state of solutions at 25 °C and 15 atm expressed as 
Log[Ω) for phases with little pH dependence in solubility 

Sample_ID Site  %error Barite Celestite    Gypsum Halite SiO2(a) 
50 Margrethe-

holm 
-1.2 0.5 -0.1 -0.5 -0.7     

51 Margrethe-
holm 

-0.3 0.7 -0.1 -0.4 -0.7     

52 Margrethe-
holm 

-0.2 0.4 -0.1 -0.4 -0.7     

53 Margrethe-
holm 

-1.8 0.9     -0.5 -0.7 -0.9 

54 Margrethe-
holm 

-0.9 0.5 -0.1 -0.4 -0.7     

55 Margrethe-
holm 

-1.8 0.9 0.0 -0.3 -0.7     

56 Margrethe-
holm 

-1.6 0.9 0.0 -0.3 -0.7     

57 Margrethe-
holm 

2.7 0.7 -0.6 -0.9 -0.7     

60 Margrethe-
holm 

-5.6 1.0 -0.2 -0.5 -0.7     

61 Margrethe-
holm 

-5.2 1.1 -0.2 -0.5 -0.7     

62 Margrethe-
holm 

-2.2 1.0     -0.5 -0.7 -0.9 

63 Sønderborg 
Fjernvarme 

-2.9         -0.4 -1.0     

64 Sønderborg 
Fjernvarme 

-2.4         -0.4 -1.0     

65 Sønderborg 
Fjernvarme 

-2.4         -0.4 -1.0     

66 Sønderborg 
Fjernvarme 

-2.4         -0.4 -1.0     

67 Sønderborg 
Fjernvarme 

-2.3 0.2 -0.1 -0.4 -1.0     

68 Sønderborg 
Fjernvarme 

-2.0 0.3 -0.1 -0.5 -1.0     

69 Sønderborg 
Fjernvarme 

-0.8 0.3 -0.1 -0.5 -1.0     

70 Sønderborg 
Fjernvarme 

-1.1 0.4 -0.2 -0.6 -1.0 -1.1 

71 Sønderborg 
Fjernvarme 

-0.2         -2.9 -0.3     

72 Sønderborg 
Fjernvarme 

-1.0         -0.5 -1.0     

73 Sønderborg 
Fjernvarme 

-2.0         -0.5 -1.0     

74 Sønderborg 
Fjernvarme 

-2.3         -0.4 -1.0     

75 Sønderborg 
Fjernvarme 

-2.3         -0.4 -1.0     

76 Sønderborg 
Fjernvarme 

-2.1         -0.4 -1.0     

77 Sønderborg 
Fjernvarme 

-2.3         -0.4 -1.0     

78 Sønderborg 
Fjernvarme 

-1.6 0.5 -0.1 -0.5 -1.0 -1.1 

79 Sønderborg 
Fjernvarme 

-1.9     -0.1 -0.5 -1.0 -1.1 

80 Sønderborg 
Fjernvarme 

-0.5 0.3 -0.2 -0.6 -1.0     
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81 Thisted 
Varmeforsy
ning 

0.7 0.0 -1.4 -1.8 -1.0     

82 Thisted 
Varmeforsy
ning 

0.3 0.5 -1.0 -1.4 -1.0     

83 Thisted 
Varmeforsy
ning 

-0.9             -1.0     

84 Thisted 
Varmeforsy
ning 

0.0 0.6 -0.9 -1.3 -1.0     

85 Thisted 
Varmeforsy
ning 

-1.0             -1.0     

99 Gross 
Schöne-
beck 

-1.8 0.7 -0.3 -0.6 -0.6     

100 Gross 
Schöne-
beck 

-0.7 1.3 -0.5 -0.7 -0.6     

101 Gross 
Schöne-
beck 

0.0 0.7 -0.7 -1.0 -0.6     

102 Gross 
Schöne-
beck 

1.8 0.1 -0.8 -1.0 -0.6     

115 Gross 
Schöne-
beck 

2.0 0.7 -0.5 -0.8 -0.6 -1.1 

116 Gross 
Schöne-
beck 

6.2 0.9 -0.3 -0.5 -0.7 -1.1 

117 Gross 
Schöne-
beck 

5.3 0.8 -0.4 -0.6 -0.7 -1.1 

118 Gross 
Schöne-
beck 

0.5 1.0 -0.2 -0.5 -0.6 -0.9 

132 Honselers-
dijk 

-0.7 0.8 -0.4 -1.1 -1.2 -3.9 

133 Honselers-
dijk 

-1.0 0.8 -0.5 -1.0 -1.3 -0.6 

134 Pijnacker 
Nootdorp 

3.6 0.6 -0.9 -1.5 -1.2 -4.2 

135 Pijnacker 
Nootdorp 

10.6 0.6 -0.9 -1.5 -1.2 -3.8 

136 Honselers-
dijk 

-0.7 0.8 -0.4 -1.0 -1.2 -4.2 

137 Pijnacker 
Nootdorp 

6.3 0.6 -0.9 -1.5 -1.2 -4.2 

161 Insheim 0.7 1.2 -1.1 -1.1 -1.6 -0.1 
162 Insheim 0.4 1.4 -0.7 -1.1 -2.2 -0.2 
164 Lund -0.8     -0.8 -1.8 -2.1 -1.2 
165 Lund 0.2     -2.2 -3.1 -2.2 -1.2 
166 Melleray -2.1 1.2 -0.1 -0.3 -2.5     
167 Ch‚teauroux

. St Jean 
-0.8         -2.8         

168 Neustadt-
Glewe 

2.1     0.0 -0.5 -0.5     

169 Neubrande
nburg 

-2.0 0.3 -0.3 -0.7 -1.2     

170 Waren/-
Müritz 

0.0 0.3 -0.2 -0.6 -1.0     

171 Neuruppin 0.7     -0.1 -0.3 -0.7     
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172 GeneSys 
Horstberg 

-1.1 1.9 0.8 0.3 -0.3     

187 Acquarossa
-ALB 

1.3         -0.1 -8.6     

217 Pyrzyce 0.8         -0.6 -1.4     
188 Andeer-

STH 
0.2         -0.1 -8.9     

189 Baden-
LIMMAT 

3.6         -0.2 -4.7     

190 Bad-Ragaz-
PFA 

6.2         -2.2 -7.5     

191 Berlingen-
B3 

0.8         -2.9 -6.4     

192 Bormio-
SANMA  

1.8         -0.5 -8.4     

193 Brigerbad-
TQBId 

3.1         -0.8 -6.1     

194 Combioula-
C3 

1.1         0.0 -4.9     

195 DelÈmont-
S3 

4.2         -2.7 -9.1     

196 Furka-
S8737 

-3.7         -2.3 -9.2     

197 Lavey-les-
Bains-P600 

-1.6         -1.2 -5.7     

198 Leukerbad-
SANLO 

0.8         -0.2 -8.6     

199 Lostorf-F3 5.7         -0.9 -9.2     
200 Mont-Blanc-

S138 
22.0         -2.2 -9.1     

201 Riehen-F1 -0.3         -0.1 -3.3     
202 Rothenbrun

nen-SSTH 
15.4         -1.4 -7.7     

203 Saeckingen
-BAD 

0.5         -1.6 -4.5     

204 Saint-
Gervais-les-
Bains-G1 

2.8         -0.4 -4.6     

205 Sankt-
Moritz-PSG 

1.1         -0.4 -4.4     

206 Schinznach
-Bad-S3 

4.3         -0.6 -6.1     

207 Simplon-F1  0.0         -0.4 -10.7     
208 Steinenstad

t-GEORG 
1.4         -1.0 -4.7     

209 Val díIlliez-
F3 

3.0         -0.2 -8.7     

210 Vals-NB 2.6         -0.2 -9.2     
211 Weissenbur

g-STH 
0.5         -0.3 -8.4     

212 Yverdon-
les-Bains-
F4 

2.8         -2.5 -8.3     

213 Zurich-B2  1.8         -3.0 -5.9     
214 Zurzach-

Bad-T1 
2.7         -2.0 -6.0     

215 GT-1 -3.4 1.0 -0.4 -0.6 -5.2     
216 GT-2 2.5 0.2 -1.3 -1.6 -3.8     
218 Podhole -11.6             -5.2     
219 DKJ -2.3 0.2 -1.2 -1.1 -5.1 -1.3 
220 SH(SportHo

tel) 
-2.7 -0.2 -1.4 -1.4 -5.2 -1.4 

221 HHL03 4.5 -0.2 -2.6 -2.6 -6.4 -1.6 
222 DFZZ01 2.4 -0.1 -2.8 -2.8 -6.1 -1.4 
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223 DFZZ01-
R(DFZZ02) 

0.2 0.0 -2.7 -2.6 -6.1 -1.6 

224 AS01 -0.7 -0.4 -3.3 -3.1 -6.3 -1.1 
225 AS01-

R(AS02) 
3.7 -0.5 -2.8 -2.9 -6.3 -1.1 

226 HHL01 -2.1 -3.2 -6.2 -5.8 -6.9 -1.1 
227 HHL01-

R(HHL02) 
-1.7 -0.8 -3.9 -3.7 -6.9 -1.2 

228 NK15(Zoo) 1.6 -0.7 -2.4 -2.5 -5.9 -1.1 
229 WQ10 0.7 -0.7 -3.6 -3.2 -6.6 -1.0 
230 JH -1.1 0.3 -1.0 -1.7 -5.1 -1.3 
231 DG24 -3.2 0.1 -2.4 -2.6 -5.1 -1.1 
232 Tg19(Tangg

u) 
-3.5 0.4 -1.8 -2.2 -5.4 -0.9 

233 Tg19(Tangg
u) 

0.3         -2.3 -5.4 -0.9 

234 WQ5 0.1 -0.4 -3.3 -4.1 -6.4 -0.7 
235 WQ5 5.3         -4.1 -6.3 -0.7 
236 DL25(BioPa

rk) 
3.4 0.5 -1.1 -1.6 -5.4 -0.7 

237 DL25(BioPa
rk) 

3.4         -1.5 -5.3 -0.8 

238 DL25R(Bio
Park) 

-1.7 0.5 -1.1 -1.7 -5.3 -0.8 

239 WANG3 4.4 0.4 -0.8 -1.8 -6.3 -0.7 
240 DL16 -1.5 0.5 -1.0 -1.5 -5.4 -1.1 
241 NK14 -4.2 0.5 0.1 -0.1 -4.9 -0.9 
242 JN02 -1.1 0.4 -0.9 -1.8 -5.2 -1.1 
243 DL11 0.8 0.5 -1.1 -1.5 -5.4 -0.9 
244 WANG-4 8.0 0.5 -1.4 -1.7 -6.2 -1.0 
245 WANG-4 12.7         -1.7 -6.3 -0.8 
246 HD09 -0.9 0.6 -1.1 -1.7 -5.3 -0.8 
247 HD09-

R(HD02) 
-1.3 0.6 -1.1 -1.7 -5.4 -0.7 

248 HD12 -2.1 0.6 -1.1 -1.6 -5.3 -0.7 
249 HD12-

R(HD13) 
-0.4 0.6 -1.1 -1.8 -5.3 -0.6 

250 HD14 -1.8 0.6 -1.1 -1.7 -5.3 -0.8 
251 HD14 -0.5         -1.6 -5.3 -0.7 
252 HD14R -0.2 0.6 -1.1 -1.7 -5.3 -0.7 
253 JXW -0.7 0.4 -1.0 -1.5 -5.1 -1.0 
254 XQ10 -2.7 0.5 -1.0 -1.5 -5.1 -0.7 
255 DGZT -1.4 0.6 -1.2 -1.9 -5.2 -0.8 
256 DGZT 5.7         -1.8 -5.2 -0.6 
257 XQ11 1.1 0.7 -1.1 -1.6 -5.2 -0.6 
258 ZL1 5.3 0.6 -1.3 -1.8 -6.2 -0.8 
259 ZL1 3.4         -1.7 -6.3 -0.6 
260 DL28 -2.7 0.6 -1.1 -1.7 -5.4 -0.9 
Hester_1 Den Haag -0.6 1.7 -0.6 -1.2 -1.3     
Hester_2 Heemskerk 1.5 1.0 -0.1 -0.4 -0.5     
Hester_3 Heemskerk 1.0 1.0 0.0 -0.4 -0.4     
Hester_4 Heemskerk 2.0 1.0 -0.1 -0.4 -0.5     
Hester_6 Honselers-

dijk 
1.8 0.5 -0.5 -1.0 -1.3 -0.9 

Hester_8 IJsselmuide
n 

-0.5             -0.8 -0.9 

Hester_9 IJsselmuide
n 

2.1 0.7 0.0 -0.3 -0.7     

Hester_10 IJsselmuide
n 

-6.8 0.7 0.0 -0.3 -0.7     

Hester_11 IJsselmuide
n 

-1.8 0.7 0.0 -0.3 -0.7     

Hester_12 IJsselmuide
n 

1.7 0.6 -0.1 -0.4 -0.6     
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Hester_13 IJsselmuide
n 

0.9 0.3 -0.4 -0.7 -0.7     

Hester_22 Pijnacker 2 
(ECW) 

-0.1 0.8 -1.0 -1.6 -1.2 -0.9 

Hester_23 Pijnacker 2 
(ECW) 

-0.1         -0.7 -2.8     

Hester_24 Pijnacker 2 
(ECW) 

-0.1             -7.3 -1.5 

Hester_25 Pijnacker 2 
(ECW) 

-2.4 0.7 -1.0 -1.7 -1.3 -1.2 

Hester_26 Bleiswijk 0.6     -0.6 -1.2 -1.5 -0.6 
Hester_27 Bleiswijk 5.1             -1.5 -0.9 
Hester_28 Bleiswijk -1.5     -0.5 -1.1 -1.5 -0.6 
Hester_29 Berkel en 

Rodenrijs 
  -0.6 -1.1 -1.5 -0.5 

Hester_30 Berkel en 
Rodenrijs 

    -1.5 -1.2 

Hester_31 Berkel en 
Rodenrijs 

    -1.4 -1.3 

Hester_32 Berkel en 
Rodenrijs 

  -0.5 -1.1 -1.4 -0.5 

  
  
  
  
  
  
  
  
Table A.2. Saturation indices for calcite and barite as well as selected qualitites for the solutions at 
downhole conditions. Numbers in red refers to values that are deemed highly uncertain because of 
shortcomings in the pitzer database used. 

Sample-
id 

Feature-
name 

sampling
place 

T (°C) P (atm) Ca (mg/l) Na (mg/l) Calcite 
Log(Ω) 

Barite 
Log(Ω) 

51 Margrethe
holm 

Downhole  73 253 23000 52900 0.5 -0.1 

52 Margrethe
holm 

Downhole  73 253 23100 54000 0.5 -0.4 

54 Margrethe
holm 

Well Head 70 253 23500 53500 0.7 -0.2 

55 Margrethe
holm 

Surface 
filter 
before 
cooling 

72 253 22200 52800 1.5 0.1 

56 Margrethe
holm 

Surface 
filter after 
cooling 

70 253 23600 51300 1.5 0.1 

62 Margrethe
holm 

Well Head 61 253 20505 53974 -0.5 0.4 

69 Sønder-
borg 
fjernvarme 

Well head 
after 
cooling 

46 110 4600 55900 0.3 0.0 

70 Sønder-
borg 
fjernvarme 

Well Head 46 110 3899 55249 -0.4 0.1 

81 Thisted 
Varme-
forsyning 

Well Head 37 120 7500 55000 -0.1 -0.2 

83 Thisted 
Varme-
forsyning 

Well Head 43 120 6909 51882 -0.7  



 

 Doc.nr: 
Version: 
Classification: 
Page: 

PERFORM-D1.3 
Final 2020.01.15 
Public 
62 of 62 

 
 

         

www.perform.eu 

99 Gross 
Schöne-
beck 

Downhole  147 446 54000 38400 0.5 -1.6 

100 Gross 
Schöne-
beck 

Downhole  145 435 52500 38150 2.1 -0.8 

101 Gross 
Schöne-
beck 

Downhole  145 432 54000 37900 1.7 -1.4 

102 Gross 
Schöne-
beck 

Downhole  147 436 56500 38700 1.3 -2.2 

115 Gross 
Schöne-
beck 

Downhole  145 434 54000 39200 -0.7 -1.5 

116 Gross 
Schöne-
beck 

Downhole  131 369 53800 39600 -0.8 -1.0 

117 Gross 
Schöne-
beck 

Downhole  122 303 52900 38000 -0.9 -0.9 

118 Gross 
Schöne-
beck 

Downhole  107 238 54800 37700 -0.6 -0.6 

133 Honselers
dijk 

surface (at 
sideline) 

84 263 6190 38800 -0.7 0.1 

Hester_1 Den Haag  75 220 5460 39000 0.0 1.0 
132 Honselers

dijk 
 84 250 5280 45960 -0.4 0.0 

Hester_6 Honselers
dijk 

 84 250 5890 42100 -0.2 -0.2 

136 Honselers
dijk 

 84 250 5181 45840 -0.5 0.0 

Hester_9 IJsselmuid
en 

 84 189 15850 60350 -0.5 -0.2 

Hester_10 IJsselmuid
en 

 84 189 15700 59500 -0.6 -0.2 

Hester_11 IJsselmuid
en 

 84 189 16000 61200 -0.4 -0.2 

Hester_12 IJsselmuid
en 

 84 189 16300 58900 -0.1 -0.3 

Hester_13 IJsselmuid
en 

 84 189 16600 57800 -2.3 -0.5 

Hester_26 Bleiswijk  60 175 4370 32700 0.5  
Hester_27 Bleiswijk  60 175 3631 34280 0.3  
Hester_28 Bleiswijk   60 175 4366 33000 0.2   

 
 


